A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (Phyllostachys pubescens) Forests From Sentinel-2 MSI Data
IF 4.7 2区 地球科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (Phyllostachys pubescens) Forests From Sentinel-2 MSI Data","authors":"Zhanghua Xu;Chaofei Zhang;Songyang Xiang;Lingyan Chen;Xier Yu;Haitao Li;Zenglu Li;Xiaoyu Guo;Huafeng Zhang;Xuying Huang;Fengying Guan","doi":"10.1109/JSTARS.2024.3522774","DOIUrl":null,"url":null,"abstract":"Leaf area index (LAI) and chlorophyll content are crucial variables in photosynthesis, respiration, and transpiration, playing a vital role in monitoring vegetation stress, estimating productivity, and evaluating carbon cycling processes. Currently, physical models are widely adopted for estimating LAI and canopy chlorophyll content (CCC). However, the main challenges of physical model-based methods for estimating LAI and CCC are the high computational cost and the fact that different combinations of canopy variables result in similar spectral reflectance for local minima. To address this limitation, a hybrid model was proposed to invert the LAI and CCC in Moso bamboo (<italic>Phyllostachys pubescens</i>) forests. This approach utilized the PROSAIL canopy radiation transfer model, established look-up table (LUT) for LAI and CCC, and employed the Stacking ensemble learning framework. Compared with the PROSAIL LUT method, the hybrid model demonstrated higher performance in predicting LAI and CCC by incorporating the strengths of different models within the hybrid framework. The R<sup>2</sup> values between predicted and measured values were improved by 3.28% and 7.15%, while the RMSE values were reduced by 19.71% and 16.14%, respectively. Moreover, the hybrid model based on Stacking ensemble learning achieved an 86% reduction in running time. Therefore, the hybrid model, which integrates the PROSAIL model with the Stacking ensemble learning framework, offers a more efficient and accurate approach for remotely estimating the LAI and CCC in Moso bamboo forests. The high efficiency of this method makes it promising and suitable for application to other types of vegetation.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3125-3143"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818736","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10818736/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf area index (LAI) and chlorophyll content are crucial variables in photosynthesis, respiration, and transpiration, playing a vital role in monitoring vegetation stress, estimating productivity, and evaluating carbon cycling processes. Currently, physical models are widely adopted for estimating LAI and canopy chlorophyll content (CCC). However, the main challenges of physical model-based methods for estimating LAI and CCC are the high computational cost and the fact that different combinations of canopy variables result in similar spectral reflectance for local minima. To address this limitation, a hybrid model was proposed to invert the LAI and CCC in Moso bamboo (Phyllostachys pubescens) forests. This approach utilized the PROSAIL canopy radiation transfer model, established look-up table (LUT) for LAI and CCC, and employed the Stacking ensemble learning framework. Compared with the PROSAIL LUT method, the hybrid model demonstrated higher performance in predicting LAI and CCC by incorporating the strengths of different models within the hybrid framework. The R2 values between predicted and measured values were improved by 3.28% and 7.15%, while the RMSE values were reduced by 19.71% and 16.14%, respectively. Moreover, the hybrid model based on Stacking ensemble learning achieved an 86% reduction in running time. Therefore, the hybrid model, which integrates the PROSAIL model with the Stacking ensemble learning framework, offers a more efficient and accurate approach for remotely estimating the LAI and CCC in Moso bamboo forests. The high efficiency of this method makes it promising and suitable for application to other types of vegetation.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.