Bo Zhao;Jianjun Peng;Ce Chen;Yongyan Fan;Kai Zhang;Yang Zhang
{"title":"Diagnosis of Coronary Heart Disease Through Deep Learning-Based Segmentation and Localization in Computed Tomography Angiography","authors":"Bo Zhao;Jianjun Peng;Ce Chen;Yongyan Fan;Kai Zhang;Yang Zhang","doi":"10.1109/ACCESS.2025.3528638","DOIUrl":null,"url":null,"abstract":"Coronary heart disease (CHD), a leading cause of global mortality, requires precise and early diagnosis for effective intervention. Coronary computed tomography angiography (CCTA) has emerged as a non-invasive modality for detailed coronary artery visualization; however, automatic and accurate segmentation of coronary structures from CCTA images remains challenging. Conventional convolutional neural networks (CNNs), despite their success in medical imaging, face limitations in capturing the complex, long-range dependencies in coronary artery images due to their localized receptive fields. Vision transformers, with their self-attention mechanisms, offer a global perspective, yet demand extensive data and computational resources, making them less adaptable for the often limited medical imaging datasets. This research addresses these challenges by proposing TransCHD, a hybrid CNN-Transformer architecture developed for coronary artery segmentation in CCTA. TransCHD incorporates a Contextual Representation Learning (CRL) module and a Spatially-Aware Feature (SAF) module, enabling both local feature extraction and global contextual awareness within a unified architecture. The CRL module mitigates spatial continuity disruptions caused by standard patch-based transformers, while the SAF module enhances spatial locality and preserves fine-grained anatomical details essential for accurate segmentation. The segmentation outcomes are clinically significant as they provide quantitative assessments of arterial stenosis, plaque characterization, and ischemia-prone regions, supporting risk assessment and treatment planning. Trained and evaluated on the CorArtTS2020 dataset, TransCHD achieved superior performance compared to state-of-the-art CNN- and transformer-based models, with a Dice score of 0.81 and an Intersection over Union (IoU) of 0.65. Results show that our proposed TransCHD is effective in CCTA segmentation.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"10177-10193"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838557","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10838557/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Coronary heart disease (CHD), a leading cause of global mortality, requires precise and early diagnosis for effective intervention. Coronary computed tomography angiography (CCTA) has emerged as a non-invasive modality for detailed coronary artery visualization; however, automatic and accurate segmentation of coronary structures from CCTA images remains challenging. Conventional convolutional neural networks (CNNs), despite their success in medical imaging, face limitations in capturing the complex, long-range dependencies in coronary artery images due to their localized receptive fields. Vision transformers, with their self-attention mechanisms, offer a global perspective, yet demand extensive data and computational resources, making them less adaptable for the often limited medical imaging datasets. This research addresses these challenges by proposing TransCHD, a hybrid CNN-Transformer architecture developed for coronary artery segmentation in CCTA. TransCHD incorporates a Contextual Representation Learning (CRL) module and a Spatially-Aware Feature (SAF) module, enabling both local feature extraction and global contextual awareness within a unified architecture. The CRL module mitigates spatial continuity disruptions caused by standard patch-based transformers, while the SAF module enhances spatial locality and preserves fine-grained anatomical details essential for accurate segmentation. The segmentation outcomes are clinically significant as they provide quantitative assessments of arterial stenosis, plaque characterization, and ischemia-prone regions, supporting risk assessment and treatment planning. Trained and evaluated on the CorArtTS2020 dataset, TransCHD achieved superior performance compared to state-of-the-art CNN- and transformer-based models, with a Dice score of 0.81 and an Intersection over Union (IoU) of 0.65. Results show that our proposed TransCHD is effective in CCTA segmentation.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.