Nils Lohmiller;Sabrina Kaniewski;Michael Menth;Tobias Heer
{"title":"A Survey of Post-Quantum Cryptography Migration in Vehicles","authors":"Nils Lohmiller;Sabrina Kaniewski;Michael Menth;Tobias Heer","doi":"10.1109/ACCESS.2025.3528562","DOIUrl":null,"url":null,"abstract":"The advent of quantum computers makes asymmetric cryptographic algorithms insecure and vulnerable. A promising solution to ensure the continued security attributes of confidentiality, integrity, and availability is the use of Post-Quantum Cryptography (PQC) algorithms. The adoption of quantum-safe algorithms takes place at a vastly different pace in different industries. In some industries, adoption processes are slow due to the required adaptation of regulations and standards. At the same time, long-lived products with non-PQC algorithms are more likely to become insecure during their lifetime. Vehicles are a prime example of long-lived products where the adoption of PQC proceeds slowly. When quantum computers are able to break relevant key lengths of asymmetric cryptography and, thus, render current vehicle systems insecure, vehicles that are developed and produced today will most likely remain in use. In this work, we provide a structured and comprehensive overview of the current migration state of PQC algorithms in the automotive area. We address use cases involving asymmetric cryptography in the automotive context that face the challenge of adapting PQC, such as internal vehicle networks, manufacturer-specific communication, and vehicle-to-everything communication. In addition, we review the standards concerning vehicle security and their relevance to PQC. Finally, we identify and discuss open research challenges regarding the adoption of PQC in the automotive domain and further steps towards quantum-safe vehicles.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"10160-10176"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10838531/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of quantum computers makes asymmetric cryptographic algorithms insecure and vulnerable. A promising solution to ensure the continued security attributes of confidentiality, integrity, and availability is the use of Post-Quantum Cryptography (PQC) algorithms. The adoption of quantum-safe algorithms takes place at a vastly different pace in different industries. In some industries, adoption processes are slow due to the required adaptation of regulations and standards. At the same time, long-lived products with non-PQC algorithms are more likely to become insecure during their lifetime. Vehicles are a prime example of long-lived products where the adoption of PQC proceeds slowly. When quantum computers are able to break relevant key lengths of asymmetric cryptography and, thus, render current vehicle systems insecure, vehicles that are developed and produced today will most likely remain in use. In this work, we provide a structured and comprehensive overview of the current migration state of PQC algorithms in the automotive area. We address use cases involving asymmetric cryptography in the automotive context that face the challenge of adapting PQC, such as internal vehicle networks, manufacturer-specific communication, and vehicle-to-everything communication. In addition, we review the standards concerning vehicle security and their relevance to PQC. Finally, we identify and discuss open research challenges regarding the adoption of PQC in the automotive domain and further steps towards quantum-safe vehicles.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.