Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weike Quan, Zihao Wang, Yueqing Shi, Kangkai Liang, Liya Bi, Hao Zhou, Zhiyuan Yin, Wan-Lu Li, Shaowei Li
{"title":"Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation","authors":"Weike Quan, Zihao Wang, Yueqing Shi, Kangkai Liang, Liya Bi, Hao Zhou, Zhiyuan Yin, Wan-Lu Li, Shaowei Li","doi":"10.1021/jacs.4c16218","DOIUrl":null,"url":null,"abstract":"Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy. We identify multiple transition pathways between two structural states, each governed by distinct vibrational modes. The nuclear motions corresponding to these modes are elucidated through density functional theory calculations. By leveraging fundamental forces, including van der Waals interactions, dipole–dipole interactions, and steric hindrance, we precisely tune the molecule-environment coupling. This tuning enables the modulation of vibrational energies, adjustment of transition probabilities, and selection of the lowest-energy transition pathway. Our findings highlight how tunable force fields in a nanoscale cavity can govern molecular conformational transitions, providing a pathway to engineer molecule-environment interactions for targeted molecular functionalities.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"15 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16218","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy. We identify multiple transition pathways between two structural states, each governed by distinct vibrational modes. The nuclear motions corresponding to these modes are elucidated through density functional theory calculations. By leveraging fundamental forces, including van der Waals interactions, dipole–dipole interactions, and steric hindrance, we precisely tune the molecule-environment coupling. This tuning enables the modulation of vibrational energies, adjustment of transition probabilities, and selection of the lowest-energy transition pathway. Our findings highlight how tunable force fields in a nanoscale cavity can govern molecular conformational transitions, providing a pathway to engineer molecule-environment interactions for targeted molecular functionalities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信