Ultra slow-roll with a black hole

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Lewis Croney, Ruth Gregory and Sam Patrick
{"title":"Ultra slow-roll with a black hole","authors":"Lewis Croney, Ruth Gregory and Sam Patrick","doi":"10.1088/1475-7516/2025/01/096","DOIUrl":null,"url":null,"abstract":"We investigate ultra slow-roll inflation with a seed black hole in a de Sitter background. By numerically tracking transitions from slow-roll to ultra slow-roll inflation, we find that quasi-normal mode solutions of the scalar field are excited following the decay of the slow-roll attractor, depending on the mass of the black hole. For small black holes, the picture is similar to standard inflation with the usual damping of the scalar field; with a large black hole, we find that the ringing modes dominate. It is believed that the transition to ultra slow-roll in the pure inflationary case enhances the peak of the primordial power spectrum, thereby increasing the likelihood of primordial black hole formation. We comment on how the novel ringing behaviour due to the seed black hole might impact on cosmological perturbations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"25 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/096","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate ultra slow-roll inflation with a seed black hole in a de Sitter background. By numerically tracking transitions from slow-roll to ultra slow-roll inflation, we find that quasi-normal mode solutions of the scalar field are excited following the decay of the slow-roll attractor, depending on the mass of the black hole. For small black holes, the picture is similar to standard inflation with the usual damping of the scalar field; with a large black hole, we find that the ringing modes dominate. It is believed that the transition to ultra slow-roll in the pure inflationary case enhances the peak of the primordial power spectrum, thereby increasing the likelihood of primordial black hole formation. We comment on how the novel ringing behaviour due to the seed black hole might impact on cosmological perturbations.
超慢滚黑洞
我们在德西特背景下研究了一个种子黑洞的超慢滚膨胀。通过数值跟踪从慢滚膨胀到超慢滚膨胀的转变,我们发现标量场的准正规模式解随着慢滚吸引子的衰变而被激发,这取决于黑洞的质量。对于小黑洞,图像类似于标准膨胀,具有标量场的通常阻尼;在大黑洞中,我们发现环状模式占主导地位。据信,在纯暴胀情况下,过渡到超慢滚增强了原始功率谱的峰值,从而增加了原始黑洞形成的可能性。我们评论了由于种子黑洞引起的新的振铃行为如何影响宇宙摄动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信