Measuring river slope using spaceborne GNSS reflectometry: Methodology and first performance assessment

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yang Wang, Y. Jade Morton, J. Toby Minear, Alexa Putnam, Alex Conrad, Penina Axelrad, R. Steven Nerem, April Warnock, Christopher Ruf, Daniel Medeiros Moreira, Matthieu Talpe
{"title":"Measuring river slope using spaceborne GNSS reflectometry: Methodology and first performance assessment","authors":"Yang Wang, Y. Jade Morton, J. Toby Minear, Alexa Putnam, Alex Conrad, Penina Axelrad, R. Steven Nerem, April Warnock, Christopher Ruf, Daniel Medeiros Moreira, Matthieu Talpe","doi":"10.1016/j.rse.2025.114597","DOIUrl":null,"url":null,"abstract":"River slope, a crucial parameter in hydrological modeling, has historically been difficult to measure continuously on a regional or global scale. Satellite altimetry missions often have long revisit times, such as 10 to 20 days for the Surface Water and Ocean Topography (SWOT) mission. In this paper, a novel approach is presented utilizing spaceborne GNSS Reflectometry (GNSS-R) to measure river slopes with high accuracy and potentially short revisit times. Our Earth is enveloped in radio signals from over 100 GNSS satellites. These signals can be coherently reflected from river surfaces and detected by low Earth orbit (LEO) satellites with sufficient energy to estimate carrier phase. The carrier phase measurement captures water surface height variations, which can be extracted through modeling of the reflection signal propagation geometry and space environment effects to estimate river slopes. This study processes both the raw intermediate frequency (IF) data obtained by NASA’s Cyclone GNSS (CYGNSS) microsatellites and the grazing-angle GNSS-R data generated by Spire Global nanosatellites to demonstrate the feasibility and performance of the GNSS-R based river slope retrieval. This paper focuses on selected river sections with width greater than <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo is=\"true\"&gt;&amp;#x223C;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.163ex\" role=\"img\" style=\"vertical-align: 0.307ex; margin-bottom: -0.427ex;\" viewbox=\"0 -449.1 778.5 500.8\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-223C\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">∼</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">∼</mo></math></script></span>500 meters. Detailed methodologies and error analyses are presented, indicating total uncertainty of approximately 0.38 cm/km plus ionospheric TEC model error for CYGNSS and 0.69 cm/km for Spire (with dual-frequency ionospheric correction) over an ideal 5-km river section at 30° elevation angle. The retrieval results are validated in areas with nearby flat water surfaces (such as lakes or wide and slow river sections) and against in situ gauge measurements and satellite altimetry, consistently demonstrating the high accuracy and reliability of spaceborne GNSS-R for measuring river slopes.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"37 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.114597","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

River slope, a crucial parameter in hydrological modeling, has historically been difficult to measure continuously on a regional or global scale. Satellite altimetry missions often have long revisit times, such as 10 to 20 days for the Surface Water and Ocean Topography (SWOT) mission. In this paper, a novel approach is presented utilizing spaceborne GNSS Reflectometry (GNSS-R) to measure river slopes with high accuracy and potentially short revisit times. Our Earth is enveloped in radio signals from over 100 GNSS satellites. These signals can be coherently reflected from river surfaces and detected by low Earth orbit (LEO) satellites with sufficient energy to estimate carrier phase. The carrier phase measurement captures water surface height variations, which can be extracted through modeling of the reflection signal propagation geometry and space environment effects to estimate river slopes. This study processes both the raw intermediate frequency (IF) data obtained by NASA’s Cyclone GNSS (CYGNSS) microsatellites and the grazing-angle GNSS-R data generated by Spire Global nanosatellites to demonstrate the feasibility and performance of the GNSS-R based river slope retrieval. This paper focuses on selected river sections with width greater than 500 meters. Detailed methodologies and error analyses are presented, indicating total uncertainty of approximately 0.38 cm/km plus ionospheric TEC model error for CYGNSS and 0.69 cm/km for Spire (with dual-frequency ionospheric correction) over an ideal 5-km river section at 30° elevation angle. The retrieval results are validated in areas with nearby flat water surfaces (such as lakes or wide and slow river sections) and against in situ gauge measurements and satellite altimetry, consistently demonstrating the high accuracy and reliability of spaceborne GNSS-R for measuring river slopes.
利用星载GNSS反射测量法测量河流坡度:方法和首次性能评估
河流坡度是水文模型中的一个重要参数,但一直以来难以在区域或全球尺度上连续测量。卫星测高任务通常需要很长的重访时间,例如地表水和海洋地形(SWOT)任务需要10到20天。本文提出了一种利用星载GNSS反射测量(GNSS- r)测量河流坡度的新方法,具有高精度和潜在的短重访时间。我们的地球被来自100多颗全球导航卫星系统的无线电信号所包围。这些信号可以从河流表面相干反射,并被低地球轨道(LEO)卫星探测到,具有足够的能量来估计载波相位。载波相位测量捕获水面高度变化,可以通过对反射信号传播几何形状和空间环境效应的建模来提取水面高度变化,从而估计河流坡度。本研究对NASA Cyclone GNSS (CYGNSS)微卫星获得的原始中频(IF)数据和Spire Global纳米卫星生成的掠角GNSS- r数据进行处理,以验证基于GNSS- r的河流坡度检索的可行性和性能。本文的研究对象是宽度大于~ ~ 500米的河段。给出了详细的方法和误差分析,表明在30°高程角的理想5公里河段上,CYGNSS的总不确定性约为0.38 cm/km,加上电离层TEC模型误差,Spire(双频电离层校正)的总不确定性约为0.69 cm/km。检索结果在附近有平坦水面(如湖泊或宽阔而缓慢的河段)的地区进行了验证,并与现场测量和卫星测高相对照,一致证明了星载GNSS-R测量河坡的高精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信