Zheng Du , Bao Zhang , Yibin Yao , Qingzhi Zhao , Liang Zhang
{"title":"Integrating near-infrared, thermal infrared, and microwave satellite observations to retrieve high-resolution precipitable water vapor","authors":"Zheng Du , Bao Zhang , Yibin Yao , Qingzhi Zhao , Liang Zhang","doi":"10.1016/j.rse.2025.114611","DOIUrl":null,"url":null,"abstract":"<div><div>Various techniques have been developed to monitor water vapor because of its important role in weather forecasting and climate change studies. However, high-resolution, spatially continuous water vapor data remain scarce due to the sparsity of ground stations, coarse observational resolution, unavailability of remote sensing data during cloudy conditions, and systematic biases among different techniques. In this study we developed the Global Navigation Satellite System (GNSS) aided algorithms to retrieve Precipitable Water Vapor (PWV) from near-infrared (NIR), thermal infrared (TIR), and microwave (MW) observations from the Medium Resolution Spectral Imager II (MERSI-II) and the Microwave Radiation Imager (MWRI) onboard the Fengyun-3D satellite. We also proposed an improved iterative tropospheric decomposition algorithm to fuse the multiband PWV data, yielding the NIR + TIR PWV (0.01°), the MW PWV (0.25°), and the fused PWV (0.001°) for Australia. Validation against the GNSS PWV shows that the NIR + TIR PWV has a Root Mean Square Error (RMSE) of 1.45 mm and a bias of 0.07 mm, implying a 34 % improvement over the operational NIR products in terms of RMSE. The MW PWV shows RMSE and bias of 1.86 mm and 0.05 mm. The fused PWV integrates the advantages of different datasets, further enhancing the accuracy by 15 % for the NIR + TIR PWV and 21 % for the MW PWV. This study made the first attempt to retrieve PWV from three-band observations and delivers high-quality PWV products, which fills the data gap for high-resolution, spatially continuous PWV information.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114611"},"PeriodicalIF":11.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572500015X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Various techniques have been developed to monitor water vapor because of its important role in weather forecasting and climate change studies. However, high-resolution, spatially continuous water vapor data remain scarce due to the sparsity of ground stations, coarse observational resolution, unavailability of remote sensing data during cloudy conditions, and systematic biases among different techniques. In this study we developed the Global Navigation Satellite System (GNSS) aided algorithms to retrieve Precipitable Water Vapor (PWV) from near-infrared (NIR), thermal infrared (TIR), and microwave (MW) observations from the Medium Resolution Spectral Imager II (MERSI-II) and the Microwave Radiation Imager (MWRI) onboard the Fengyun-3D satellite. We also proposed an improved iterative tropospheric decomposition algorithm to fuse the multiband PWV data, yielding the NIR + TIR PWV (0.01°), the MW PWV (0.25°), and the fused PWV (0.001°) for Australia. Validation against the GNSS PWV shows that the NIR + TIR PWV has a Root Mean Square Error (RMSE) of 1.45 mm and a bias of 0.07 mm, implying a 34 % improvement over the operational NIR products in terms of RMSE. The MW PWV shows RMSE and bias of 1.86 mm and 0.05 mm. The fused PWV integrates the advantages of different datasets, further enhancing the accuracy by 15 % for the NIR + TIR PWV and 21 % for the MW PWV. This study made the first attempt to retrieve PWV from three-band observations and delivers high-quality PWV products, which fills the data gap for high-resolution, spatially continuous PWV information.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.