Lagrangian Subvarieties of Hyperspherical Varieties

IF 2.4 1区 数学 Q1 MATHEMATICS
Michael Finkelberg, Victor Ginzburg, Roman Travkin
{"title":"Lagrangian Subvarieties of Hyperspherical Varieties","authors":"Michael Finkelberg, Victor Ginzburg, Roman Travkin","doi":"10.1007/s00039-025-00703-3","DOIUrl":null,"url":null,"abstract":"<p>Given a hyperspherical <i>G</i>-variety 𝒳 we consider the zero moment level Λ<sub>𝒳</sub>⊂𝒳 of the action of a Borel subgroup <i>B</i>⊂<i>G</i>. We conjecture that Λ<sub>𝒳</sub> is Lagrangian. For the dual <i>G</i><sup>∨</sup>-variety 𝒳<sup>∨</sup>, we conjecture that that there is a bijection between the sets of irreducible components <span>\\(\\operatorname {Irr}\\Lambda _{{\\mathscr{X}}}\\)</span> and <span>\\(\\operatorname {Irr}\\Lambda _{{\\mathscr{X}}^{\\vee }}\\)</span>. We check this conjecture for all the hyperspherical equivariant slices, and for all the basic classical Lie superalgebras.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00703-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a hyperspherical G-variety 𝒳 we consider the zero moment level Λ𝒳⊂𝒳 of the action of a Borel subgroup BG. We conjecture that Λ𝒳 is Lagrangian. For the dual G-variety 𝒳, we conjecture that that there is a bijection between the sets of irreducible components \(\operatorname {Irr}\Lambda _{{\mathscr{X}}}\) and \(\operatorname {Irr}\Lambda _{{\mathscr{X}}^{\vee }}\). We check this conjecture for all the hyperspherical equivariant slices, and for all the basic classical Lie superalgebras.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信