A Review on Medical Image Segmentation: Datasets, Technical Models, Challenges and Solutions

Hong‐Seng Gan, Muhammad Hanif Ramlee, Zimu Wang, Akinobu Shimizu
{"title":"A Review on Medical Image Segmentation: Datasets, Technical Models, Challenges and Solutions","authors":"Hong‐Seng Gan, Muhammad Hanif Ramlee, Zimu Wang, Akinobu Shimizu","doi":"10.1002/widm.1574","DOIUrl":null,"url":null,"abstract":"Medical image segmentation is prerequisite in computer‐aided diagnosis. As the field experiences tremendous paradigm changes since the introduction of foundation models, technicality of deep medical segmentation model is no longer a privilege limited to computer science researchers. A comprehensive educational resource suitable for researchers of broad, different backgrounds such as biomedical and medicine, is needed. This review strategically covers the evolving trends that happens to different fundamental components of medical image segmentation such as the emerging of multimodal medical image datasets, updates on deep learning libraries, classical‐to‐contemporary development in deep segmentation models and latest challenges with focus on enhancing the interpretability and generalizability of model. Last, the conclusion section highlights on future trends in deep medical segmentation that worth further attention and investigations.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image segmentation is prerequisite in computer‐aided diagnosis. As the field experiences tremendous paradigm changes since the introduction of foundation models, technicality of deep medical segmentation model is no longer a privilege limited to computer science researchers. A comprehensive educational resource suitable for researchers of broad, different backgrounds such as biomedical and medicine, is needed. This review strategically covers the evolving trends that happens to different fundamental components of medical image segmentation such as the emerging of multimodal medical image datasets, updates on deep learning libraries, classical‐to‐contemporary development in deep segmentation models and latest challenges with focus on enhancing the interpretability and generalizability of model. Last, the conclusion section highlights on future trends in deep medical segmentation that worth further attention and investigations.
医学图像分割:数据集、技术模型、挑战和解决方案综述
医学图像分割是计算机辅助诊断的前提。自基础模型引入以来,该领域经历了巨大的范式变化,深度医学分割模型的技术性不再局限于计算机科学研究人员。需要一种适合具有广泛、不同背景的研究人员(如生物医学和医学)的综合教育资源。这篇综述战略性地涵盖了医学图像分割的不同基本组成部分的发展趋势,如多模态医学图像数据集的出现、深度学习库的更新、深度分割模型从经典到当代的发展以及关注于增强模型的可解释性和泛化性的最新挑战。最后,总结部分重点介绍了值得进一步关注和研究的深度医学细分的未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信