Beamforming Optimization for Robust Sensing and Communication in Dynamic mmWave MIMO Networks

Lei Li;Jiawei Zhang;Tsung-Hui Chang
{"title":"Beamforming Optimization for Robust Sensing and Communication in Dynamic mmWave MIMO Networks","authors":"Lei Li;Jiawei Zhang;Tsung-Hui Chang","doi":"10.1109/JSAC.2025.3531545","DOIUrl":null,"url":null,"abstract":"Acquiring accurate channel state information (CSI) at low overhead is crucial for millimeter wave MIMO communications but is challenging in dynamic environments. In this work, we exploit the emerging integrated sensing and communication (ISAC) beamforming technique for concurrent CSI sensing and data transmission. Despite its low overhead, the corresponding ISAC transmit beamforming design faces a complex trade-off between CSI sensing accuracy and communication interference management. To address this, we formulate the beamforming design as an optimization problem minimizing the maximum Cramér-Rao bound (CRB) of CSI sensing errors subject to the users’ worst-case communication rates under CSI errors. To efficiently solve the problem, we step-by-step propose three algorithms. The first algorithm is based on the semidefinite relaxation and successive convex optimization techniques, which can serve as a benchmark algorithm but suffers high computational complexity. To efficiently handle the worst-case objective and rate constraints, we propose a complexity-reduced algorithm based on the primal-dual optimization method and first-order min-max algorithm. Furthermore, we dismiss SDR and employ the block coordinate descent method combined with cheap gradient descent steps to achieve a low-complexity algorithm. Extensive simulations show the proposed ISAC beamforming design and low-complexity algorithms can provide robust communication performance and significantly outperform existing schemes.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 4","pages":"1354-1370"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring accurate channel state information (CSI) at low overhead is crucial for millimeter wave MIMO communications but is challenging in dynamic environments. In this work, we exploit the emerging integrated sensing and communication (ISAC) beamforming technique for concurrent CSI sensing and data transmission. Despite its low overhead, the corresponding ISAC transmit beamforming design faces a complex trade-off between CSI sensing accuracy and communication interference management. To address this, we formulate the beamforming design as an optimization problem minimizing the maximum Cramér-Rao bound (CRB) of CSI sensing errors subject to the users’ worst-case communication rates under CSI errors. To efficiently solve the problem, we step-by-step propose three algorithms. The first algorithm is based on the semidefinite relaxation and successive convex optimization techniques, which can serve as a benchmark algorithm but suffers high computational complexity. To efficiently handle the worst-case objective and rate constraints, we propose a complexity-reduced algorithm based on the primal-dual optimization method and first-order min-max algorithm. Furthermore, we dismiss SDR and employ the block coordinate descent method combined with cheap gradient descent steps to achieve a low-complexity algorithm. Extensive simulations show the proposed ISAC beamforming design and low-complexity algorithms can provide robust communication performance and significantly outperform existing schemes.
动态毫米波MIMO网络中鲁棒传感和通信的波束形成优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信