D²-JSCC: Digital Deep Joint Source-Channel Coding for Semantic Communications

Jianhao Huang;Kai Yuan;Chuan Huang;Kaibin Huang
{"title":"D²-JSCC: Digital Deep Joint Source-Channel Coding for Semantic Communications","authors":"Jianhao Huang;Kai Yuan;Chuan Huang;Kaibin Huang","doi":"10.1109/JSAC.2025.3531546","DOIUrl":null,"url":null,"abstract":"Semantic communications (SemCom) have emerged as a new paradigm for supporting sixth-generation applications, where semantic features of data are transmitted using artificial intelligence algorithms to attain high communication efficiencies. Most existing SemCom techniques utilize deep neural networks (DNNs) to implement analog source-channel mappings, which are incompatible with existing digital communication architectures. To address this issue, this paper proposes a novel framework of digital deep joint source-channel coding (D2-JSCC) targeting image transmission in SemCom. The framework features digital source and channel codings that are jointly optimized to reduce the end-to-end (E2E) distortion. First, deep source coding with an adaptive prior model is designed to encode semantic features according to their distributions. Second, channel coding is employed to protect encoded features against channel distortion. To facilitate their joint design, the E2E distortion is characterized as a function of the source and channel rates via the analysis of the Bayesian model and Lipschitz assumption on the DNNs. Then to minimize the E2E distortion, a two-step algorithm is proposed to control the source-channel rates for a given channel signal-to-noise ratio. Simulation results reveal that the proposed framework outperforms classic deep JSCC and mitigates the cliff and leveling-off effects, which commonly exist for separation-based approaches.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 4","pages":"1246-1261"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845799/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic communications (SemCom) have emerged as a new paradigm for supporting sixth-generation applications, where semantic features of data are transmitted using artificial intelligence algorithms to attain high communication efficiencies. Most existing SemCom techniques utilize deep neural networks (DNNs) to implement analog source-channel mappings, which are incompatible with existing digital communication architectures. To address this issue, this paper proposes a novel framework of digital deep joint source-channel coding (D2-JSCC) targeting image transmission in SemCom. The framework features digital source and channel codings that are jointly optimized to reduce the end-to-end (E2E) distortion. First, deep source coding with an adaptive prior model is designed to encode semantic features according to their distributions. Second, channel coding is employed to protect encoded features against channel distortion. To facilitate their joint design, the E2E distortion is characterized as a function of the source and channel rates via the analysis of the Bayesian model and Lipschitz assumption on the DNNs. Then to minimize the E2E distortion, a two-step algorithm is proposed to control the source-channel rates for a given channel signal-to-noise ratio. Simulation results reveal that the proposed framework outperforms classic deep JSCC and mitigates the cliff and leveling-off effects, which commonly exist for separation-based approaches.
语义通信的数字深度联合源信道编码
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信