Towards Atomic MIMO Receivers

Mingyao Cui;Qunsong Zeng;Kaibin Huang
{"title":"Towards Atomic MIMO Receivers","authors":"Mingyao Cui;Qunsong Zeng;Kaibin Huang","doi":"10.1109/JSAC.2025.3531528","DOIUrl":null,"url":null,"abstract":"The advancement of Rydberg atoms in quantum information technology is driving a paradigm shift from classical <italic>radio-frequency</i> (RF) receivers to Rydberg atomic receivers. Capitalizing on the extreme sensitivity of Rydberg atoms to external electromagnetic fields, Rydberg atomic receivers are capable of realizing more precise radio-wave measurements than RF receivers to support high-performance wireless communication and sensing. Although the atomic receiver is developing rapidly in quantum-physics domain, its integration with wireless communications is at a nascent stage. In particular, systematic methods to enhance communication performance through this integration are yet to be discovered. Motivated by this observation, we propose in this paper to incorporate Rydberg atomic receivers into <italic>multiple-input-multiple-output</i> (MIMO) communication, a prominent 5G technology, as the first attempt on implementing atomic MIMO receivers. To begin with, we provide a comprehensive introduction on the principles of Rydberg atomic receivers and build on them to design the atomic MIMO receivers. Our findings reveal that signal detection of atomic MIMO receivers corresponds to a non-linear biased <italic>phase retrieval</i> (PR) problem, as opposed to the linear Gaussian model adopted in classical MIMO systems. Then, to recover signals from this non-linear model, we modify the Gerchberg-Saxton (GS) algorithm, a typical PR solver, into a biased GS algorithm to solve the biased PR problem. Moreover, we propose a novel Expectation-Maximization GS (EM-GS) algorithm to cope with the unique Rician distribution of the biased PR model. Our EM-GS algorithm introduces a high-pass filter constructed by the ratio of Bessel functions into the iteration procedure of GS, thereby improving the detection accuracy without sacrificing the computational efficiency. Finally, the effectiveness of the devised algorithms and the feasibility of atomic MIMO receivers are demonstrated by theoretical analysis and numerical simulation.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 3","pages":"659-673"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of Rydberg atoms in quantum information technology is driving a paradigm shift from classical radio-frequency (RF) receivers to Rydberg atomic receivers. Capitalizing on the extreme sensitivity of Rydberg atoms to external electromagnetic fields, Rydberg atomic receivers are capable of realizing more precise radio-wave measurements than RF receivers to support high-performance wireless communication and sensing. Although the atomic receiver is developing rapidly in quantum-physics domain, its integration with wireless communications is at a nascent stage. In particular, systematic methods to enhance communication performance through this integration are yet to be discovered. Motivated by this observation, we propose in this paper to incorporate Rydberg atomic receivers into multiple-input-multiple-output (MIMO) communication, a prominent 5G technology, as the first attempt on implementing atomic MIMO receivers. To begin with, we provide a comprehensive introduction on the principles of Rydberg atomic receivers and build on them to design the atomic MIMO receivers. Our findings reveal that signal detection of atomic MIMO receivers corresponds to a non-linear biased phase retrieval (PR) problem, as opposed to the linear Gaussian model adopted in classical MIMO systems. Then, to recover signals from this non-linear model, we modify the Gerchberg-Saxton (GS) algorithm, a typical PR solver, into a biased GS algorithm to solve the biased PR problem. Moreover, we propose a novel Expectation-Maximization GS (EM-GS) algorithm to cope with the unique Rician distribution of the biased PR model. Our EM-GS algorithm introduces a high-pass filter constructed by the ratio of Bessel functions into the iteration procedure of GS, thereby improving the detection accuracy without sacrificing the computational efficiency. Finally, the effectiveness of the devised algorithms and the feasibility of atomic MIMO receivers are demonstrated by theoretical analysis and numerical simulation.
迈向原子MIMO接收机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信