A fast algorithm for smooth convex minimization problems and its application to inverse source problems

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Pham Quy Muoi, Vo Quang Duy, Chau Vinh Khanh, Nguyen Trung Thành
{"title":"A fast algorithm for smooth convex minimization problems and its application to inverse source problems","authors":"Pham Quy Muoi, Vo Quang Duy, Chau Vinh Khanh, Nguyen Trung Thành","doi":"10.1093/imanum/drae091","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast algorithm for smooth convex minimization problems in a real Hilbert space whose objective functionals have Lipschitz continuous Fréchet derivatives. The main advantage of the proposed algorithm is that it has the optimal-order convergence rate and faster than Nesterov’s algorithm with the best setting. To demonstrate the efficiency of the proposed algorithm, we compare it with Nesterov’s algorithm in several examples, including inverse source problems for elliptic and hyperbolic PDEs. The numerical tests show that the proposed algorithm converges faster than Nesterov’s algorithm.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae091","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a fast algorithm for smooth convex minimization problems in a real Hilbert space whose objective functionals have Lipschitz continuous Fréchet derivatives. The main advantage of the proposed algorithm is that it has the optimal-order convergence rate and faster than Nesterov’s algorithm with the best setting. To demonstrate the efficiency of the proposed algorithm, we compare it with Nesterov’s algorithm in several examples, including inverse source problems for elliptic and hyperbolic PDEs. The numerical tests show that the proposed algorithm converges faster than Nesterov’s algorithm.
光滑凸极小化问题的快速算法及其在逆源问题中的应用
在本文中,我们提出了一种快速求解目标泛函具有Lipschitz连续fracimchet导数的实数Hilbert空间中光滑凸最小化问题的算法。该算法的主要优点是具有最优阶收敛速度,并且比最佳设置下的Nesterov算法更快。为了证明该算法的有效性,我们将其与Nesterov算法在几个例子中进行了比较,包括椭圆型和双曲型偏微分方程的逆源问题。数值实验表明,该算法比Nesterov算法收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信