Fairness aware secure energy efficiency maximization for UAV-assisted data collection in backscattering networks

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS
Jiawang Zeng, Deepak Mishra, Hassan Habibi Gharakheili, Aruna Seneviratne
{"title":"Fairness aware secure energy efficiency maximization for UAV-assisted data collection in backscattering networks","authors":"Jiawang Zeng, Deepak Mishra, Hassan Habibi Gharakheili, Aruna Seneviratne","doi":"10.1016/j.vehcom.2025.100881","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles for intelligent surveillance in rural areas increasingly demand low-cost and reliable data collection technologies to perform dense monitoring across extended areas. Backscattering communication has been employed for this purpose, primarily for low-cost and energy efficiency reasons. This paper considers a backscattering data collection system empowered by unmanned aerial vehicles (UAVs) to overcome the challenge of wireless coverage and provide backscattering tags with physical-layer security. Relevant prior works only focused on the secrecy of backscattering communications, while the limited battery of UAVs was overlooked during the underlying vehicle control. This paper aims to jointly optimize the trajectory of multiple UAVs and choice of tags, as well as tags' reflection parameters, to manage data leakage and total energy consumed by UAVs during a round of data collection. Our specific contributions are threefold. (1) We propose a 3D multi-UAV backscattering data collection framework and formulate an optimization problem to maximize the ratio of secrecy across all tags to the power consumption of UAVs subject to some practical constraints. (2) We show that our problem is non-convex and partition it into three sub-problems, transform objective functions, and relax certain constraints to obtain approximate convex problems that yield suboptimal solutions. (3) We evaluate the efficacy of our proposed intelligent security protocol for UAV-assisted data collection, compare its performance with some baseline schemes, our protocal achieve leading performance in terms of secrecy energy efficiency. We also provide the impact of parameters on the secrecy energy efficiency, as well as quantify its complexity via extensive simulations.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"205 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100881","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles for intelligent surveillance in rural areas increasingly demand low-cost and reliable data collection technologies to perform dense monitoring across extended areas. Backscattering communication has been employed for this purpose, primarily for low-cost and energy efficiency reasons. This paper considers a backscattering data collection system empowered by unmanned aerial vehicles (UAVs) to overcome the challenge of wireless coverage and provide backscattering tags with physical-layer security. Relevant prior works only focused on the secrecy of backscattering communications, while the limited battery of UAVs was overlooked during the underlying vehicle control. This paper aims to jointly optimize the trajectory of multiple UAVs and choice of tags, as well as tags' reflection parameters, to manage data leakage and total energy consumed by UAVs during a round of data collection. Our specific contributions are threefold. (1) We propose a 3D multi-UAV backscattering data collection framework and formulate an optimization problem to maximize the ratio of secrecy across all tags to the power consumption of UAVs subject to some practical constraints. (2) We show that our problem is non-convex and partition it into three sub-problems, transform objective functions, and relax certain constraints to obtain approximate convex problems that yield suboptimal solutions. (3) We evaluate the efficacy of our proposed intelligent security protocol for UAV-assisted data collection, compare its performance with some baseline schemes, our protocal achieve leading performance in terms of secrecy energy efficiency. We also provide the impact of parameters on the secrecy energy efficiency, as well as quantify its complexity via extensive simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信