Fatima Domenica Elisa De Palma, Jonathan G. Pol, Vincent Carbonnier, Sarah Adriana Scuderi, Deborah Mannino, Léa Montégut, Allan Sauvat, Maria Perez-Lanzon, Elisabet Uribe-Carretero, Mario Guarracino, Ilaria Granata, Raffaele Calogero, Valentina Del Monaco, Donatella Montanaro, Gautier Stoll, Gerardo Botti, Massimiliano D’Aiuto, Alfonso Baldi, Valeria D’Argenio, Roderic Guigó, René Rezsohazy, Guido Kroemer, Maria Chiara Maiuri, Francesco Salvatore
{"title":"Epigenetic regulation of HOXA2 expression affects tumor progression and predicts breast cancer patient survival","authors":"Fatima Domenica Elisa De Palma, Jonathan G. Pol, Vincent Carbonnier, Sarah Adriana Scuderi, Deborah Mannino, Léa Montégut, Allan Sauvat, Maria Perez-Lanzon, Elisabet Uribe-Carretero, Mario Guarracino, Ilaria Granata, Raffaele Calogero, Valentina Del Monaco, Donatella Montanaro, Gautier Stoll, Gerardo Botti, Massimiliano D’Aiuto, Alfonso Baldi, Valeria D’Argenio, Roderic Guigó, René Rezsohazy, Guido Kroemer, Maria Chiara Maiuri, Francesco Salvatore","doi":"10.1038/s41418-024-01430-2","DOIUrl":null,"url":null,"abstract":"<p>Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the <i>Homeobox A2</i> (<i>HOXA2</i>) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of <i>HOXA2</i> in breast tumorigenesis has remained elusive. To address this point, we conducted high-throughput RNA sequencing and DNA methylation array studies on laser-microdissected human BC samples, paired with normal tissue samples. Additionally, we performed comprehensive in silico analyses using large public datasets: TCGA and METABRIC. The diagnostic performance of <i>HOXA2</i> was calculated by means of receiver operator characteristic curves. Its prognostic significance was assessed through immunohistochemical studies and Kaplan-Meier Plotter database interrogation. Moreover, we explored the function of <i>HOXA2</i> and its role in breast carcinogenesis through in silico, in vitro, and in vivo investigations. Our work revealed significant hypermethylation and downregulation of <i>HOXA2</i> in human BC tissues. Low <i>HOXA2</i> expression correlated with increased BC aggressiveness and unfavorable patient survival outcomes. Suppression of <i>HOXA2</i> expression significantly heightened cell proliferation, migration, and invasion in BC cells, and promoted tumor growth in mice. Conversely, transgenic <i>HOXA2</i> overexpression suppressed these cellular processes and promoted apoptosis of cancer cells. Interestingly, a strategy of pharmacological demethylation successfully restored <i>HOXA2</i> expression in malignant cells, reducing their neoplastic characteristics. Bioinformatics analyses, corroborated by in vitro experimentations, unveiled a novel implication of HOXA2 in the lipid metabolism of BC. Specifically, depletion of <i>HOXA2</i> leaded to a concomitantly decreased expression of <i>PPARγ</i> and its target <i>CIDEC</i>, a master regulator of lipid droplet (LD) accumulation, thereby resulting in reduced LD abundance in BC cells. In summary, our study identifies <i>HOXA2</i> as a novel prognosis-relevant tumor suppressor in the mammary gland.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"27 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01430-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the Homeobox A2 (HOXA2) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of HOXA2 in breast tumorigenesis has remained elusive. To address this point, we conducted high-throughput RNA sequencing and DNA methylation array studies on laser-microdissected human BC samples, paired with normal tissue samples. Additionally, we performed comprehensive in silico analyses using large public datasets: TCGA and METABRIC. The diagnostic performance of HOXA2 was calculated by means of receiver operator characteristic curves. Its prognostic significance was assessed through immunohistochemical studies and Kaplan-Meier Plotter database interrogation. Moreover, we explored the function of HOXA2 and its role in breast carcinogenesis through in silico, in vitro, and in vivo investigations. Our work revealed significant hypermethylation and downregulation of HOXA2 in human BC tissues. Low HOXA2 expression correlated with increased BC aggressiveness and unfavorable patient survival outcomes. Suppression of HOXA2 expression significantly heightened cell proliferation, migration, and invasion in BC cells, and promoted tumor growth in mice. Conversely, transgenic HOXA2 overexpression suppressed these cellular processes and promoted apoptosis of cancer cells. Interestingly, a strategy of pharmacological demethylation successfully restored HOXA2 expression in malignant cells, reducing their neoplastic characteristics. Bioinformatics analyses, corroborated by in vitro experimentations, unveiled a novel implication of HOXA2 in the lipid metabolism of BC. Specifically, depletion of HOXA2 leaded to a concomitantly decreased expression of PPARγ and its target CIDEC, a master regulator of lipid droplet (LD) accumulation, thereby resulting in reduced LD abundance in BC cells. In summary, our study identifies HOXA2 as a novel prognosis-relevant tumor suppressor in the mammary gland.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.