Matched pairs demonstrate robustness against inter-assay variability

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jochem Nelen, Horacio Pérez-Sánchez, Hans De Winter, Dries Van Rompaey
{"title":"Matched pairs demonstrate robustness against inter-assay variability","authors":"Jochem Nelen,&nbsp;Horacio Pérez-Sánchez,&nbsp;Hans De Winter,&nbsp;Dries Van Rompaey","doi":"10.1186/s13321-025-00956-y","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning models for chemistry require large datasets, often compiled by combining data from multiple assays. However, combining data without careful curation can introduce significant noise. While absolute values from different assays are rarely comparable, trends or differences between compounds are often assumed to be consistent. This study evaluates that assumption by analyzing potency differences between matched compound pairs across assays and assessing the impact of assay metadata curation on error reduction. We find that potency differences between matched pairs exhibit less variability than individual compound measurements, suggesting systematic assay differences may partially cancel out in paired data. Metadata curation further improves inter-assay agreement, albeit at the cost of dataset size. For minimally curated compound pairs, agreement within 0.3 pChEMBL units was found to be 44–46% for K<sub>i</sub> and IC<sub>50</sub> values respectively, which improved to 66–79% after curation. Similarly, the percentage of pairs with differences exceeding 1 pChEMBL unit dropped from 12 to 15% to 6–8% with extensive curation. These results establish a benchmark for expected noise in matched molecular pair data from the ChEMBL database, offering practical metrics for data quality assessment.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00956-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00956-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models for chemistry require large datasets, often compiled by combining data from multiple assays. However, combining data without careful curation can introduce significant noise. While absolute values from different assays are rarely comparable, trends or differences between compounds are often assumed to be consistent. This study evaluates that assumption by analyzing potency differences between matched compound pairs across assays and assessing the impact of assay metadata curation on error reduction. We find that potency differences between matched pairs exhibit less variability than individual compound measurements, suggesting systematic assay differences may partially cancel out in paired data. Metadata curation further improves inter-assay agreement, albeit at the cost of dataset size. For minimally curated compound pairs, agreement within 0.3 pChEMBL units was found to be 44–46% for Ki and IC50 values respectively, which improved to 66–79% after curation. Similarly, the percentage of pairs with differences exceeding 1 pChEMBL unit dropped from 12 to 15% to 6–8% with extensive curation. These results establish a benchmark for expected noise in matched molecular pair data from the ChEMBL database, offering practical metrics for data quality assessment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信