Marine Le Berre,Thibault Tubiana,Philippa Reuterswärd Waldner,Noureddine Lazar,Ines Li de la Sierra-Gallay,Joana M Santos,Manuel Llinás,Sylvie Nessler
{"title":"Structural characterization of the ACDC domain from ApiAP2 proteins, a potential molecular target against apicomplexan parasites.","authors":"Marine Le Berre,Thibault Tubiana,Philippa Reuterswärd Waldner,Noureddine Lazar,Ines Li de la Sierra-Gallay,Joana M Santos,Manuel Llinás,Sylvie Nessler","doi":"10.1107/s2059798324012518","DOIUrl":null,"url":null,"abstract":"The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins. However, a conserved AP2-coincident domain mostly at the C-terminus (ACDC domain) is observed in a subset of the ApiAP2 proteins. The structure and function of this domain remain unknown. We report two crystal structures of ACDC domains derived from distinct Plasmodium ApiAP2 proteins, revealing a conserved, unique, noncanonical, four-helix bundle architecture. We used these structures to perform in silico docking calculations against a library of known antimalarial compounds and identified potential small-molecule ligands that bind in a highly conserved hydrophobic pocket that is present in all apicomplexan ACDC domains. These ligands provide a new molecular basis for the future design of ACDC inhibitors.","PeriodicalId":501686,"journal":{"name":"Acta Crystallographica Section D","volume":"27 1","pages":"38-48"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2059798324012518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins. However, a conserved AP2-coincident domain mostly at the C-terminus (ACDC domain) is observed in a subset of the ApiAP2 proteins. The structure and function of this domain remain unknown. We report two crystal structures of ACDC domains derived from distinct Plasmodium ApiAP2 proteins, revealing a conserved, unique, noncanonical, four-helix bundle architecture. We used these structures to perform in silico docking calculations against a library of known antimalarial compounds and identified potential small-molecule ligands that bind in a highly conserved hydrophobic pocket that is present in all apicomplexan ACDC domains. These ligands provide a new molecular basis for the future design of ACDC inhibitors.