A strain-path dependent unified constitutive model of titanium alloy coupling coarse grain subdivision and recrystallization: application to multi-directional hot deformation
Shiqi Guo, Siliang Yan, Liang Huang, Kezhuo Liu, Changmin Li
{"title":"A strain-path dependent unified constitutive model of titanium alloy coupling coarse grain subdivision and recrystallization: application to multi-directional hot deformation","authors":"Shiqi Guo, Siliang Yan, Liang Huang, Kezhuo Liu, Changmin Li","doi":"10.1016/j.ijplas.2025.104248","DOIUrl":null,"url":null,"abstract":"Primary hot working, represented by multi-directional hot forging and annealing, is a crucial step in microstructure control and plays a decisive role in the ultimate performance of ultra-high strength titanium alloy components. However, the interaction mechanisms of multiple physical processes comprising work hardening, dynamic recovery, dynamic recrystallization and grain fragmentation under complex thermo-mechanical routes are not yet well known, which greatly limits the process optimization and control of primary hot working process. In order to accurately predict the macro-micro behaviors of coarse-grained titanium alloys during multi-directional hot deformation and annealing processes, a strain-path dependent unified constitutive model was established comprehensively considering the intragranular coarse grain subdivision (ICGS) caused by ribbon and transgranular subdivided continuous dynamic recrystallization (CDRX), as well as the boundary-based coarse grain subdivision (BCGS) composed of discontinuous dynamic recrystallization (DDRX) coupled with boundary expand CDRX, and the interaction of various mechanisms under dislocation configuration. Through the combination of large deformation framework and viscoplastic theory, the influence of thermo-mechanical loading path and strain rate on grain refinement efficiency was elucidated. In the present model, the cumulative effects of loading direction changes on the degree of grain fragmentation were well identified by defining a new geometric parameter, viz. the loading axis rotation angle of the passes. The ICGS mechanism was introduced to the grain evolution model for the first time, by establishing a quatitative correlation between shear strain and the volume fraction of grain internal subdivision. In this way, the through-process precision prediction of the refinement degree of characteristic regions under multi-directional deformation paths was finally realized by combining BCGS and ICGS mechanisms, and the evolution of mechanical behaviors and internal variables in the alternating multi-directional hot deformation with heat preservation were simulated. The predictive results of the model were consistent with experiments of the titanium alloy with an average error of 4.93% and the refinement degrees of coarse-grained structures under different strain rates, temperatures and cumulative multi-directional large strains were well captured. Moreover, the applicable grain size range of the present constitutive model within a wide strain range was extended to 4 orders of magnitude (from micrometer to centimeter), and the effectiveness of the model in identifying complex multi-directional loading, multiple annealing and the heredity of internal variables during primary hot deformation were validated.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"57 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104248","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Primary hot working, represented by multi-directional hot forging and annealing, is a crucial step in microstructure control and plays a decisive role in the ultimate performance of ultra-high strength titanium alloy components. However, the interaction mechanisms of multiple physical processes comprising work hardening, dynamic recovery, dynamic recrystallization and grain fragmentation under complex thermo-mechanical routes are not yet well known, which greatly limits the process optimization and control of primary hot working process. In order to accurately predict the macro-micro behaviors of coarse-grained titanium alloys during multi-directional hot deformation and annealing processes, a strain-path dependent unified constitutive model was established comprehensively considering the intragranular coarse grain subdivision (ICGS) caused by ribbon and transgranular subdivided continuous dynamic recrystallization (CDRX), as well as the boundary-based coarse grain subdivision (BCGS) composed of discontinuous dynamic recrystallization (DDRX) coupled with boundary expand CDRX, and the interaction of various mechanisms under dislocation configuration. Through the combination of large deformation framework and viscoplastic theory, the influence of thermo-mechanical loading path and strain rate on grain refinement efficiency was elucidated. In the present model, the cumulative effects of loading direction changes on the degree of grain fragmentation were well identified by defining a new geometric parameter, viz. the loading axis rotation angle of the passes. The ICGS mechanism was introduced to the grain evolution model for the first time, by establishing a quatitative correlation between shear strain and the volume fraction of grain internal subdivision. In this way, the through-process precision prediction of the refinement degree of characteristic regions under multi-directional deformation paths was finally realized by combining BCGS and ICGS mechanisms, and the evolution of mechanical behaviors and internal variables in the alternating multi-directional hot deformation with heat preservation were simulated. The predictive results of the model were consistent with experiments of the titanium alloy with an average error of 4.93% and the refinement degrees of coarse-grained structures under different strain rates, temperatures and cumulative multi-directional large strains were well captured. Moreover, the applicable grain size range of the present constitutive model within a wide strain range was extended to 4 orders of magnitude (from micrometer to centimeter), and the effectiveness of the model in identifying complex multi-directional loading, multiple annealing and the heredity of internal variables during primary hot deformation were validated.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.