Thermoelectric Performance Predictions Combining Experiments with Multi-Band Modelling

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Bharti Agrawal, Titas Dasgupta
{"title":"Thermoelectric Performance Predictions Combining Experiments with Multi-Band Modelling","authors":"Bharti Agrawal, Titas Dasgupta","doi":"10.1002/adts.202401222","DOIUrl":null,"url":null,"abstract":"The search for high-performance thermoelectric (TE) materials requires accurate property predictions and the development of analytical models to mimic the temperature dependent charge and heat transport in semiconductors. This is a non-trivial task as most thermoelectric materials have complex electronic band structures with multiple bands contributing to charge transport. In this work, it is shown that using a combination of experiments and a recently developed multi-band modelling technique, it is possible to accurately predict the temperature and doping dependent properties of TE materials. The steps involved are experimental data collection, model parameter generation, and data interpolation. The methodology is elaborated using the example of Mg<sub>2</sub>Si<sub>0.3</sub>Sn<sub>0.7</sub> which is a high-performance, low-cost thermoelectric material. 3-D maps of power factor and thermoelectric figure of merit (<span data-altimg=\"/cms/asset/6e2f8b6e-4841-4c46-9d8f-f619b7c2eebd/adts202401222-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401222-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"z upper T\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401222:adts202401222-math-0001\" display=\"inline\" location=\"graphic/adts202401222-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"z upper T\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">z</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow>$zT$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) are generated as a function of temperature and doping concentration. Model validation is carried out for a randomly prepared composition which yields maximum deviations of ±10% in the <span data-altimg=\"/cms/asset/00d884c0-6418-48fc-ab4f-d40edfe8ad47/adts202401222-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401222-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"z upper T\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401222:adts202401222-math-0002\" display=\"inline\" location=\"graphic/adts202401222-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"z upper T\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">z</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow>$zT$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the power factor plots. The results highlight the potential of this tool for rapid screening of high-performance compositions.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"144 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The search for high-performance thermoelectric (TE) materials requires accurate property predictions and the development of analytical models to mimic the temperature dependent charge and heat transport in semiconductors. This is a non-trivial task as most thermoelectric materials have complex electronic band structures with multiple bands contributing to charge transport. In this work, it is shown that using a combination of experiments and a recently developed multi-band modelling technique, it is possible to accurately predict the temperature and doping dependent properties of TE materials. The steps involved are experimental data collection, model parameter generation, and data interpolation. The methodology is elaborated using the example of Mg2Si0.3Sn0.7 which is a high-performance, low-cost thermoelectric material. 3-D maps of power factor and thermoelectric figure of merit (zT$zT$) are generated as a function of temperature and doping concentration. Model validation is carried out for a randomly prepared composition which yields maximum deviations of ±10% in the zT$zT$ and the power factor plots. The results highlight the potential of this tool for rapid screening of high-performance compositions.

Abstract Image

结合实验与多波段建模的热电性能预测
寻找高性能热电(TE)材料需要准确的性能预测和分析模型的发展,以模拟半导体中温度相关的电荷和热输运。这是一项重要的任务,因为大多数热电材料具有复杂的电子能带结构,多个能带有助于电荷传输。在这项工作中,研究表明,结合实验和最近开发的多波段建模技术,可以准确预测TE材料的温度和掺杂依赖性质。所涉及的步骤是实验数据收集,模型参数生成和数据插值。以高性能、低成本的热电材料Mg2Si0.3Sn0.7为例,详细阐述了该方法。生成了随温度和掺杂浓度变化的功率因数和热电优值(z¹T$zT$)的三维图。对随机制备的组合物进行了模型验证,该组合物在z¹T$zT$和功率因数图中产生±10%的最大偏差。结果突出了该工具在快速筛选高性能组合物方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信