Spectroscopy and Modeling of Yb171 Rydberg States for High-Fidelity Two-Qubit Gates

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Michael Peper, Yiyi Li, Daniel Y. Knapp, Mila Bileska, Shuo Ma, Genyue Liu, Pai Peng, Bichen Zhang, Sebastian P. Horvath, Alex P. Burgers, Jeff D. Thompson
{"title":"Spectroscopy and Modeling of Yb171 Rydberg States for High-Fidelity Two-Qubit Gates","authors":"Michael Peper, Yiyi Li, Daniel Y. Knapp, Mila Bileska, Shuo Ma, Genyue Liu, Pai Peng, Bichen Zhang, Sebastian P. Horvath, Alex P. Burgers, Jeff D. Thompson","doi":"10.1103/physrevx.15.011009","DOIUrl":null,"url":null,"abstract":"Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for highly excited Yb</a:mi></a:mrow>174</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:mi>Yb</c:mi></c:mrow><c:mprescripts/><c:none/><c:mrow><c:mn>171</c:mn></c:mrow></c:mmultiscripts></c:mrow></c:math> Rydberg states with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>L</e:mi><e:mo>≤</e:mo><e:mn>2</e:mn></e:math>. The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi>Yb</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>171</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> using <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>F</i:mi><i:mo>=</i:mo><i:mn>3</i:mn><i:mo>/</i:mo><i:mn>2</i:mn></i:math> Rydberg states. We then identify a more suitable <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>F</k:mi><k:mo>=</k:mo><k:mn>1</k:mn><k:mo>/</k:mo><k:mn>2</k:mn></k:math> state, and achieve a state-of-the-art controlled- gate fidelity of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"script\">F</m:mi><m:mo>=</m:mo><m:mn>0.994</m:mn><m:mo stretchy=\"false\">(</m:mo><m:mn>1</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math>, with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation, and entanglement-enhanced metrology with Yb neutral atom arrays. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"2 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011009","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for highly excited Yb174 and Yb171 Rydberg states with L2. The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in Yb171 using F=3/2 Rydberg states. We then identify a more suitable F=1/2 state, and achieve a state-of-the-art controlled- gate fidelity of F=0.994(1), with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation, and entanglement-enhanced metrology with Yb neutral atom arrays. Published by the American Physical Society 2025
高保真双量子位门Yb171 Rydberg态的光谱和建模
高激发态及其相互作用在量子计算和模拟中起着重要作用。这些性质可以准确地预测具有简单里德伯能级结构的碱原子。然而,将这些方法扩展到更复杂的原子,如碱土原子,尚未得到证明或实验验证。本文建立了L≤2的高激发Yb174和Yb171里德堡态的多通道量子缺陷模型。该模型是结合现有文献数据和新的高精度激光和微波光谱在原子束中开发的,并通过与实验测量的斯塔克位移和磁矩进行详细比较来验证。然后,我们使用这些模型来计算两个Yb原子之间的相互作用势,并发现与光学镊子阵列的直接测量结果非常吻合。从计算的相互作用势中,我们发现了一个异常Förster共振,该共振可能降低了Yb171中使用F=3/2里德堡态的先前纠缠门的保真度。然后,我们确定了一个更合适的F=1/2状态,并实现了最先进的控制门保真度F=0.994(1),剩余的误差完全由已知来源解释。这项工作为Yb中性原子阵列的量子计算、模拟和纠缠增强计量的持续发展奠定了坚实的基础。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信