S. Vaidya, S. P. M. Curley, P. Manuel, J. Ross Stewart, M. Duc Le, C. Balz, T. Shiroka, S. J. Blundell, K. A. Wheeler, I. Calderon-Lin, Z. E. Manson, J. L. Manson, J. Singleton, T. Lancaster, R. D. Johnson, P. A. Goddard
{"title":"Magnetic properties of a staggered S=1 chain with an alternating single-ion anisotropy direction","authors":"S. Vaidya, S. P. M. Curley, P. Manuel, J. Ross Stewart, M. Duc Le, C. Balz, T. Shiroka, S. J. Blundell, K. A. Wheeler, I. Calderon-Lin, Z. E. Manson, J. L. Manson, J. Singleton, T. Lancaster, R. D. Johnson, P. A. Goddard","doi":"10.1103/physrevb.111.014421","DOIUrl":null,"url":null,"abstract":"Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy (D</a:mi></a:math>), and intrachain (<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>J</b:mi><b:mn>0</b:mn></b:msub></b:math>) and interchain (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msubsup><c:mi>J</c:mi><c:mrow><c:mn>1</c:mn><c:mo>,</c:mo><c:mn>2</c:mn></c:mrow><c:mo>′</c:mo></c:msubsup></c:math>) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:mi>Ni</d:mi><d:mrow><d:mo>(</d:mo><d:mi>pyrimidine</d:mi><d:mo>)</d:mo></d:mrow><d:msub><d:mrow><d:mo>(</d:mo><d:msub><d:mi mathvariant=\"normal\">H</d:mi><d:mn>2</d:mn></d:msub><d:mi mathvariant=\"normal\">O</d:mi><d:mo>)</d:mo></d:mrow><d:mn>2</d:mn></d:msub><d:msub><d:mrow><d:mo>(</d:mo><d:msub><d:mi>NO</d:mi><d:mn>3</d:mn></d:msub><d:mo>)</d:mo></d:mrow><d:mn>2</d:mn></d:msub></d:mrow></d:math>, a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi>T</g:mi><g:mtext>N</g:mtext></g:msub><g:mo>=</g:mo><g:mn>2.3</g:mn><g:mspace width=\"0.16em\"/><g:mi mathvariant=\"normal\">K</g:mi></g:mrow></g:math> and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:msub><j:mi>J</j:mi><j:mn>0</j:mn></j:msub><j:mo>=</j:mo><j:mn>5.107</j:mn><j:mrow><j:mo>(</j:mo><j:mn>7</j:mn><j:mo>)</j:mo></j:mrow><j:mspace width=\"0.16em\"/><j:mi mathvariant=\"normal\">K</j:mi></j:mrow><j:mo>,</j:mo><j:mo> </j:mo><j:mrow><j:mi>D</j:mi><j:mo>=</j:mo><j:mn>2.79</j:mn><j:mrow><j:mo>(</j:mo><j:mn>1</j:mn><j:mo>)</j:mo></j:mrow><j:mspace width=\"0.16em\"/><j:mi mathvariant=\"normal\">K</j:mi><j:mo>,</j:mo><j:mspace width=\"0.16em\"/><j:msubsup><j:mi>J</j:mi><j:mn>1</j:mn><j:mo>′</j:mo></j:msubsup><j:mo>=</j:mo><j:mn>0.00</j:mn><j:mrow><j:mo>(</j:mo><j:mn>5</j:mn><j:mo>)</j:mo></j:mrow><j:mi mathvariant=\"normal\">K</j:mi></j:mrow><j:mo>,</j:mo><j:mo> </j:mo><j:mrow><j:msubsup><j:mi>J</j:mi><j:mn>2</j:mn><j:mo>′</j:mo></j:msubsup><j:mo>=</j:mo><j:mn>0.18</j:mn><j:mrow><j:mo>(</j:mo><j:mn>3</j:mn><j:mo>)</j:mo></j:mrow><j:mspace width=\"0.16em\"/><j:mi mathvariant=\"normal\">K</j:mi></j:mrow></j:math>, and a rhombic anisotropy energy <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:mrow><s:mi>E</s:mi><s:mo>=</s:mo><s:mn>0.19</s:mn><s:mo>(</s:mo><s:mn>9</s:mn><s:mo>)</s:mo><s:mspace width=\"0.16em\"/><s:mi mathvariant=\"normal\">K</s:mi></s:mrow></s:math>. Mean-field modeling reveals that the ground state structure hosts spin canting of <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\"><v:mrow><v:mi>ϕ</v:mi><v:mo>≈</v:mo><v:mn>6</v:mn><v:mo>.</v:mo><v:msup><v:mn>5</v:mn><v:mo>∘</v:mo></v:msup></v:mrow></v:math>, which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\"><w:mrow><w:mi>M</w:mi><w:mo>(</w:mo><w:mi>H</w:mi><w:mo>)</w:mo></w:mrow></w:math>, is then used to confirm these Hamiltonian parameters, while single-crystal <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\"><x:mrow><x:mi>M</x:mi><x:mo>(</x:mo><x:mi>H</x:mi><x:mo>)</x:mo></x:mrow></x:math> simulations provide insight into features observed in the data. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"12 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.014421","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy (D), and intrachain (J0) and interchain (J1,2′) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of Ni(pyrimidine)(H2O)2(NO3)2, a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at TN=2.3K and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find J0=5.107(7)K,D=2.79(1)K,J1′=0.00(5)K,J2′=0.18(3)K, and a rhombic anisotropy energy E=0.19(9)K. Mean-field modeling reveals that the ground state structure hosts spin canting of ϕ≈6.5∘, which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, M(H), is then used to confirm these Hamiltonian parameters, while single-crystal M(H) simulations provide insight into features observed in the data. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter