{"title":"An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle","authors":"Divya Kumawat;Ardeshir Ebtehaj;Xiaolan Xu;Andreas Colliander;Vipin Kumar","doi":"10.1109/TGRS.2025.3530356","DOIUrl":null,"url":null,"abstract":"Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-15"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10843256/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
期刊介绍:
IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.