Qingren Wang;Yuchuan Zhao;Yi Zhang;Yiwen Zhang;Shuiguang Deng;Yun Yang
{"title":"Federated Contrastive Learning for Cross-Domain Recommendation","authors":"Qingren Wang;Yuchuan Zhao;Yi Zhang;Yiwen Zhang;Shuiguang Deng;Yun Yang","doi":"10.1109/TSC.2025.3528325","DOIUrl":null,"url":null,"abstract":"Conventional cross-domain recommendation models, which require centrally collecting varieties of original data from users, usually meet a challenge that users are reluctant to provide their real feedbacks because of privacy concerns. Thus, federated learning is incorporated into cross-domain recommendation, since it aggregates parameters of local models trained on user sides to train a global recommendation model, instead of centralized data collection. However, the deviations between the global model and local ones, which are caused by users’ data with non-independent and identical distributions, significantly challenge existing federated learning-based models in terms of alleviating data sparsity and cold-start problems. This article proposes a novel end-to-end federated contrastive learning-based model towards cross-domain recommendation, namely <inline-formula><tex-math>${{Fed-CLR}}$</tex-math></inline-formula>. It first uses an inference model to characterize interaction distributions of users in source domain(s), then reconstructs historical interactions of users in target domain(s) with a generative model, and finally performs federated contrastive learning at model level (including inner-model and inter-model) to help reduce deviations between the global model and local ones. Particularly, a constraint mechanism, namely <inline-formula><tex-math>${{Con-Mec}}$</tex-math></inline-formula>, is proposed to achieve consistency reinforcement from the aspect of inner- and inter-models. The experimental results on three real-world datasets not only show that <inline-formula><tex-math>${{Fed-CLR}}$</tex-math></inline-formula> outperforms the state-of-the-art peers, but also demonstrate that <inline-formula><tex-math>${{Fed-CLR}}$</tex-math></inline-formula> achieves a faster convergence speed than classical federated learning-based models.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 2","pages":"812-827"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10842506/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional cross-domain recommendation models, which require centrally collecting varieties of original data from users, usually meet a challenge that users are reluctant to provide their real feedbacks because of privacy concerns. Thus, federated learning is incorporated into cross-domain recommendation, since it aggregates parameters of local models trained on user sides to train a global recommendation model, instead of centralized data collection. However, the deviations between the global model and local ones, which are caused by users’ data with non-independent and identical distributions, significantly challenge existing federated learning-based models in terms of alleviating data sparsity and cold-start problems. This article proposes a novel end-to-end federated contrastive learning-based model towards cross-domain recommendation, namely ${{Fed-CLR}}$. It first uses an inference model to characterize interaction distributions of users in source domain(s), then reconstructs historical interactions of users in target domain(s) with a generative model, and finally performs federated contrastive learning at model level (including inner-model and inter-model) to help reduce deviations between the global model and local ones. Particularly, a constraint mechanism, namely ${{Con-Mec}}$, is proposed to achieve consistency reinforcement from the aspect of inner- and inter-models. The experimental results on three real-world datasets not only show that ${{Fed-CLR}}$ outperforms the state-of-the-art peers, but also demonstrate that ${{Fed-CLR}}$ achieves a faster convergence speed than classical federated learning-based models.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.