Hugo Plombat, Théo Simon, Jordan Flitter and Vivian Poulin
{"title":"Probing dark relativistic species and their interactions with dark matter through CMB and 21 cm surveys","authors":"Hugo Plombat, Théo Simon, Jordan Flitter and Vivian Poulin","doi":"10.1088/1475-7516/2025/01/071","DOIUrl":null,"url":null,"abstract":"We investigate the sensitivity of the 21 cm power spectrum from cosmic dawn and the epoch of reionization to models of free-streaming dark radiation (parameterized through Neff) and interacting dark radiation-dark matter models (DM-DR). The latter models have gained attention for their potential in addressing recent cosmological tensions and structure formation challenges. We perform a Fisher matrix analysis under different assumptions regarding the astrophysical modeling, and forecast the sensitivity of HERA observations, combined with CMB data from Planck and the Simons Observatory (SO), to Neff and DM-DR interaction modeled using the ETHOS framework assuming a constant scattering rate between the two components. Most importantly, we find that 21 cm observations can improve the sensitivity to the DM-DR interaction rate by up to four order of magnitude compared to Planck and SO. Conversely, in the limit of low interaction rate (which asymptotically matches Neff), CMB data dominates the constraining power, but the inclusion of HERA data can provide a ∼ 20% improvement in sensitivity over CMB data alone. Moreover, we find that HERA observations will be able to probe a region of the DM-DR interaction parameter space which is promising to explain the weak lensing amplitude `S8' tension. Our results demonstrate the complementarity of 21 cm and CMB data in exploring dark sector interactions.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"2 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/071","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the sensitivity of the 21 cm power spectrum from cosmic dawn and the epoch of reionization to models of free-streaming dark radiation (parameterized through Neff) and interacting dark radiation-dark matter models (DM-DR). The latter models have gained attention for their potential in addressing recent cosmological tensions and structure formation challenges. We perform a Fisher matrix analysis under different assumptions regarding the astrophysical modeling, and forecast the sensitivity of HERA observations, combined with CMB data from Planck and the Simons Observatory (SO), to Neff and DM-DR interaction modeled using the ETHOS framework assuming a constant scattering rate between the two components. Most importantly, we find that 21 cm observations can improve the sensitivity to the DM-DR interaction rate by up to four order of magnitude compared to Planck and SO. Conversely, in the limit of low interaction rate (which asymptotically matches Neff), CMB data dominates the constraining power, but the inclusion of HERA data can provide a ∼ 20% improvement in sensitivity over CMB data alone. Moreover, we find that HERA observations will be able to probe a region of the DM-DR interaction parameter space which is promising to explain the weak lensing amplitude `S8' tension. Our results demonstrate the complementarity of 21 cm and CMB data in exploring dark sector interactions.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.