Lingxiao Wang, Yan Li, Barry I Graubard, Hormuzd A Katki
{"title":"Data-integration with pseudoweights and survey-calibration: application to developing US-representative lung cancer risk models for use in screening.","authors":"Lingxiao Wang, Yan Li, Barry I Graubard, Hormuzd A Katki","doi":"10.1093/jrsssa/qnae059","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate cancer risk estimation is crucial to clinical decision-making, such as identifying high-risk people for screening. However, most existing cancer risk models incorporate data from epidemiologic studies, which usually cannot represent the target population. While population-based health surveys are ideal for making inference to the target population, they typically do not collect time-to-cancer incidence data. Instead, time-to-cancer specific mortality is often readily available on surveys via linkage to vital statistics. We develop calibrated pseudoweighting methods that integrate individual-level data from a cohort and a survey, and summary statistics of cancer incidence from national cancer registries. By leveraging individual-level cancer mortality data in the survey, the proposed methods impute time-to-cancer incidence for survey sample individuals and use survey calibration with auxiliary variables of influence functions generated from Cox regression to improve robustness and efficiency of the inverse-propensity pseudoweighting method in estimating pure risks. We develop a lung cancer incidence pure risk model from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial using our proposed methods by integrating data from the National Health Interview Survey and cancer registries.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":"188 1","pages":"119-139"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate cancer risk estimation is crucial to clinical decision-making, such as identifying high-risk people for screening. However, most existing cancer risk models incorporate data from epidemiologic studies, which usually cannot represent the target population. While population-based health surveys are ideal for making inference to the target population, they typically do not collect time-to-cancer incidence data. Instead, time-to-cancer specific mortality is often readily available on surveys via linkage to vital statistics. We develop calibrated pseudoweighting methods that integrate individual-level data from a cohort and a survey, and summary statistics of cancer incidence from national cancer registries. By leveraging individual-level cancer mortality data in the survey, the proposed methods impute time-to-cancer incidence for survey sample individuals and use survey calibration with auxiliary variables of influence functions generated from Cox regression to improve robustness and efficiency of the inverse-propensity pseudoweighting method in estimating pure risks. We develop a lung cancer incidence pure risk model from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial using our proposed methods by integrating data from the National Health Interview Survey and cancer registries.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.