{"title":"Glipizide inhibits the glycation of alpha-crystallin: A combined in vitro and in silico approach in retinopathy management","authors":"Ting Li , Bo Ma , Li Zhang , Mingli Wang","doi":"10.1016/j.jmgm.2025.108950","DOIUrl":null,"url":null,"abstract":"<div><div>In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components. Under hyperglycaemic conditions, crystallins become susceptible to glycation that ultimately leads to advanced glycation endproducts (AGEs) formation. Glipizide is a well-known oral medication used in controlling levels of blood sugar, this drug stimulates the insulin release from pancreas. However, this drug has not been thoroughly investigated for its impact on α-CR glycation. In this study, we explored glipizide's protective role against glucose-induced α-CR glycation. Remarkably, glipizide effectively inhibited the formation of early glycation products, ultimately reducing AGEs formation. Additionally, glipizide provides protection against modifications of free lysine residues and lowered the carbonyl content. To gain deeper insights into mechanism of inhibition, we turn to binding studies and bioinformatics. Glipizide formed stable complex with α-CR with values of Gibbs energy ranging from −5.848 to −6.695 kcal/mol. Molecular docking revealed the binding energy as −6.5 kcal/mol and lysine residues emerged as a prominent among the key interacting residues. Notably, glipizide appears to mask lysine residues, thereby contributing to the inhibition of α-CR glycation. Furthermore, analysis of molecular simulation data reinforces the stability of this complex. Consequently, the stable α-CR-glipizide complex may prevent glucose from binding to α-CR. Overall, glipizide holds promise as a preventive measure against glycation of eye lens proteins, potentially benefiting in diabetic retinopathy.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108950"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000105","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components. Under hyperglycaemic conditions, crystallins become susceptible to glycation that ultimately leads to advanced glycation endproducts (AGEs) formation. Glipizide is a well-known oral medication used in controlling levels of blood sugar, this drug stimulates the insulin release from pancreas. However, this drug has not been thoroughly investigated for its impact on α-CR glycation. In this study, we explored glipizide's protective role against glucose-induced α-CR glycation. Remarkably, glipizide effectively inhibited the formation of early glycation products, ultimately reducing AGEs formation. Additionally, glipizide provides protection against modifications of free lysine residues and lowered the carbonyl content. To gain deeper insights into mechanism of inhibition, we turn to binding studies and bioinformatics. Glipizide formed stable complex with α-CR with values of Gibbs energy ranging from −5.848 to −6.695 kcal/mol. Molecular docking revealed the binding energy as −6.5 kcal/mol and lysine residues emerged as a prominent among the key interacting residues. Notably, glipizide appears to mask lysine residues, thereby contributing to the inhibition of α-CR glycation. Furthermore, analysis of molecular simulation data reinforces the stability of this complex. Consequently, the stable α-CR-glipizide complex may prevent glucose from binding to α-CR. Overall, glipizide holds promise as a preventive measure against glycation of eye lens proteins, potentially benefiting in diabetic retinopathy.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.