Inti Pagnuco, Stephen Eyre, Magnus Rattray, Andrew P. Morris
{"title":"Transferability of Single- and Cross-Tissue Transcriptome Imputation Models Across Ancestry Groups","authors":"Inti Pagnuco, Stephen Eyre, Magnus Rattray, Andrew P. Morris","doi":"10.1002/gepi.22611","DOIUrl":null,"url":null,"abstract":"<p>Transcriptome-wide association studies (TWAS) investigate the links between genetically regulated gene expression and complex traits. TWAS involves imputing gene expression using expression quantitative trait loci (eQTL) as predictors and testing the association between the imputed expression and the trait. The effectiveness of TWAS depends on the accuracy of these imputation models, which require genotype and gene expression data from the same samples. However, publicly accessible resources, such as the Genotype Tissue Expression (GTEx) Project, are biased toward individuals of European ancestry, potentially reducing prediction accuracy into other ancestry groups. This study explored eQTL transferability across ancestry groups by comparing two imputation models: PrediXcan (tissue-specific) and UTMOST (cross-tissue). Both models were trained on tissues from the GTEx Project using European ancestry individuals and then tested on data sets of European ancestry and African American individuals. Results showed that both models performed best when the training and testing data sets were from the same ancestry group, with the cross-tissue approach generally outperforming the tissue-specific approach. This study underscores that eQTL detection is influenced by ancestry and tissue context. Developing ancestry-specific reference panels across tissues can improve prediction accuracy, enhancing TWAS analysis and our understanding of the biological processes contributing to complex traits.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptome-wide association studies (TWAS) investigate the links between genetically regulated gene expression and complex traits. TWAS involves imputing gene expression using expression quantitative trait loci (eQTL) as predictors and testing the association between the imputed expression and the trait. The effectiveness of TWAS depends on the accuracy of these imputation models, which require genotype and gene expression data from the same samples. However, publicly accessible resources, such as the Genotype Tissue Expression (GTEx) Project, are biased toward individuals of European ancestry, potentially reducing prediction accuracy into other ancestry groups. This study explored eQTL transferability across ancestry groups by comparing two imputation models: PrediXcan (tissue-specific) and UTMOST (cross-tissue). Both models were trained on tissues from the GTEx Project using European ancestry individuals and then tested on data sets of European ancestry and African American individuals. Results showed that both models performed best when the training and testing data sets were from the same ancestry group, with the cross-tissue approach generally outperforming the tissue-specific approach. This study underscores that eQTL detection is influenced by ancestry and tissue context. Developing ancestry-specific reference panels across tissues can improve prediction accuracy, enhancing TWAS analysis and our understanding of the biological processes contributing to complex traits.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.