Transferability of Single- and Cross-Tissue Transcriptome Imputation Models Across Ancestry Groups

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Inti Pagnuco, Stephen Eyre, Magnus Rattray, Andrew P. Morris
{"title":"Transferability of Single- and Cross-Tissue Transcriptome Imputation Models Across Ancestry Groups","authors":"Inti Pagnuco,&nbsp;Stephen Eyre,&nbsp;Magnus Rattray,&nbsp;Andrew P. Morris","doi":"10.1002/gepi.22611","DOIUrl":null,"url":null,"abstract":"<p>Transcriptome-wide association studies (TWAS) investigate the links between genetically regulated gene expression and complex traits. TWAS involves imputing gene expression using expression quantitative trait loci (eQTL) as predictors and testing the association between the imputed expression and the trait. The effectiveness of TWAS depends on the accuracy of these imputation models, which require genotype and gene expression data from the same samples. However, publicly accessible resources, such as the Genotype Tissue Expression (GTEx) Project, are biased toward individuals of European ancestry, potentially reducing prediction accuracy into other ancestry groups. This study explored eQTL transferability across ancestry groups by comparing two imputation models: PrediXcan (tissue-specific) and UTMOST (cross-tissue). Both models were trained on tissues from the GTEx Project using European ancestry individuals and then tested on data sets of European ancestry and African American individuals. Results showed that both models performed best when the training and testing data sets were from the same ancestry group, with the cross-tissue approach generally outperforming the tissue-specific approach. This study underscores that eQTL detection is influenced by ancestry and tissue context. Developing ancestry-specific reference panels across tissues can improve prediction accuracy, enhancing TWAS analysis and our understanding of the biological processes contributing to complex traits.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome-wide association studies (TWAS) investigate the links between genetically regulated gene expression and complex traits. TWAS involves imputing gene expression using expression quantitative trait loci (eQTL) as predictors and testing the association between the imputed expression and the trait. The effectiveness of TWAS depends on the accuracy of these imputation models, which require genotype and gene expression data from the same samples. However, publicly accessible resources, such as the Genotype Tissue Expression (GTEx) Project, are biased toward individuals of European ancestry, potentially reducing prediction accuracy into other ancestry groups. This study explored eQTL transferability across ancestry groups by comparing two imputation models: PrediXcan (tissue-specific) and UTMOST (cross-tissue). Both models were trained on tissues from the GTEx Project using European ancestry individuals and then tested on data sets of European ancestry and African American individuals. Results showed that both models performed best when the training and testing data sets were from the same ancestry group, with the cross-tissue approach generally outperforming the tissue-specific approach. This study underscores that eQTL detection is influenced by ancestry and tissue context. Developing ancestry-specific reference panels across tissues can improve prediction accuracy, enhancing TWAS analysis and our understanding of the biological processes contributing to complex traits.

Abstract Image

跨祖先群体的单组织和跨组织转录组植入模型的可转移性。
全转录组关联研究(TWAS)研究遗传调控基因表达与复杂性状之间的联系。TWAS是利用表达数量性状位点(eQTL)作为预测因子输入基因表达,并检验输入表达与性状之间的相关性。TWAS的有效性取决于这些输入模型的准确性,这些模型需要来自相同样本的基因型和基因表达数据。然而,可公开获取的资源,如基因型组织表达(GTEx)项目,偏向于欧洲血统的个体,潜在地降低了对其他血统群体的预测准确性。本研究通过比较PrediXcan(组织特异性)和extreme(跨组织)两种植入模型,探讨了eQTL在祖先群体之间的可转移性。这两个模型都是在GTEx项目中使用欧洲血统个体的组织上进行训练的,然后在欧洲血统和非裔美国人个体的数据集上进行测试。结果表明,当训练和测试数据集来自同一祖先组时,两种模型都表现最好,跨组织方法通常优于组织特异性方法。本研究强调eQTL检测受祖先和组织背景的影响。开发跨组织的特定祖先参考面板可以提高预测的准确性,增强TWAS分析和我们对复杂性状的生物学过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信