Development of Lentiviral Packaging Cells and Scale Up of Production to Meet the Growing Demand in Cell and Gene Therapy.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Yasemin van Heuvel, Jörn Stitz
{"title":"Development of Lentiviral Packaging Cells and Scale Up of Production to Meet the Growing Demand in Cell and Gene Therapy.","authors":"Yasemin van Heuvel, Jörn Stitz","doi":"10.2174/0115665232332412241118063211","DOIUrl":null,"url":null,"abstract":"<p><p>Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components. Alternatively, stable packaging cell lines were developed and engineered to express all vector components in trans. Currently, these cells are mostly cultured in cell stacks, where they grow adherently in 2D layers, limiting the scale-up of vector production. The production of viral vectors using stable suspension cell lines enables larger-scale production and higher yields under controlled conditions. Here, we review the improvements made to enhance vector safety and production yield. Current advancements in the establishment of stable packaging cell lines enabling inducible and constitutive LVV production are summarized and discussed. Manufacturing processes for lentiviral vectors using bioreactors with perfusion systems are required to meet the growing demand in cell and gene therapy and to reduce production and therapy costs.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232332412241118063211","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components. Alternatively, stable packaging cell lines were developed and engineered to express all vector components in trans. Currently, these cells are mostly cultured in cell stacks, where they grow adherently in 2D layers, limiting the scale-up of vector production. The production of viral vectors using stable suspension cell lines enables larger-scale production and higher yields under controlled conditions. Here, we review the improvements made to enhance vector safety and production yield. Current advancements in the establishment of stable packaging cell lines enabling inducible and constitutive LVV production are summarized and discussed. Manufacturing processes for lentiviral vectors using bioreactors with perfusion systems are required to meet the growing demand in cell and gene therapy and to reduce production and therapy costs.

慢病毒包装细胞的发展和生产规模,以满足细胞和基因治疗日益增长的需求。
γ -逆转录病毒(RVVs)和慢病毒载体(LVVs)是体细胞基因治疗中不可或缺的工具,它们介导治疗基因高效、稳定地转移到各种人类靶细胞中。与RVVs相比,LVVs能够稳定地对非增殖靶细胞进行基因修饰,使其成为细胞和基因治疗的优越工具。迄今为止,LVV制造过程使用人胚胎肾细胞(HEK293)及其衍生物,用编码所需病毒载体成分的多个质粒瞬时转染。或者,稳定的包装细胞系被开发和改造,以表达所有的载体成分在trans。目前,这些细胞大多是在细胞堆中培养的,它们在二维层中粘附生长,限制了载体生产的规模。利用稳定的悬浮细胞系生产病毒载体,可以在控制条件下大规模生产和提高产量。在此,我们回顾了为提高病媒安全性和产量所做的改进。目前在建立稳定的包装细胞系,使诱导和本构LVV生产的进展进行了总结和讨论。为了满足细胞和基因治疗日益增长的需求,并降低生产和治疗成本,需要使用生物反应器和灌注系统来制造慢病毒载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信