{"title":"High cellular plasticity state of medulloblastoma local recurrence and distant dissemination.","authors":"Hailong Liu, Jing Zhang, Ziwei Wang, Wei Wang, Dongming Han, Xuan Chen, Yu Su, Jiao Zhang, Craig Daniels, Olivier Saulnier, Zeyuan John Wang, Chunyu Gu, Fei Liu, Kaiwen Deng, Dongyang Wang, Zhaoyang Feng, Yahui Zhao, Yifei Jiang, Yu Gao, Zijia Liu, Mingxu Ma, Yanong Li, Zitong Zhao, Hongyu Yuan, Youliang Sun, Yanfeng Shi, Tao Yang, Wenxing Li, Xueling Qi, Zejun Duan, Junping Zhang, Mingshan Zhang, Chunjiang Yu, Wei Jin, Xinguang Yu, Yu Tian, Shuaicheng Li, Chunde Li, Michael D Taylor, Jiankang Li, Yong-Qiang Liu, Xiaoguang Qiu, Tao Jiang","doi":"10.1016/j.xcrm.2024.101914","DOIUrl":null,"url":null,"abstract":"<p><p>Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets. Chromosomal alteration evaluation revealed distinct genetic subclones during MB progression, such as chr7q gain and chr11 loss in Group_3 disseminations. A subpopulation termed \"high cellular plasticity (HCP)\" emerged during MB progression and was associated with increased dividing potential and chromatin accessibility, contributing to recurrence. Inhibiting HCP-associated markers, like protein tyrosine phosphatase receptor type Z1 (PTPRZ1), efficiently suppressed MB progression in preclinical models. These findings address critical gaps in understanding the cellular diversity, chromosomal alterations, and biological dynamics of recurrent MB, offering potential therapeutic insights.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101914"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101914","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets. Chromosomal alteration evaluation revealed distinct genetic subclones during MB progression, such as chr7q gain and chr11 loss in Group_3 disseminations. A subpopulation termed "high cellular plasticity (HCP)" emerged during MB progression and was associated with increased dividing potential and chromatin accessibility, contributing to recurrence. Inhibiting HCP-associated markers, like protein tyrosine phosphatase receptor type Z1 (PTPRZ1), efficiently suppressed MB progression in preclinical models. These findings address critical gaps in understanding the cellular diversity, chromosomal alterations, and biological dynamics of recurrent MB, offering potential therapeutic insights.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.