{"title":"Gut microbial GABA imbalance emerges as a metabolic signature in mild autism spectrum disorder linked to overrepresented Escherichia.","authors":"Dilong Wang, Youheng Jiang, Jian Jiang, Yihang Pan, Yanming Yang, Xiaoyi Fang, Liyang Liang, Hai Li, Zepeng Dong, Shilu Fan, Daqing Ma, Xue-Song Zhang, Huiliang Li, Yulong He, Ningning Li","doi":"10.1016/j.xcrm.2024.101919","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota (GM) alterations have been implicated in autism spectrum disorder (ASD), yet the specific functional architecture remains elusive. Here, employing multi-omics approaches, we investigate stool samples from two distinct cohorts comprising 203 children with mild ASD or typical development. In our screening cohort, regression-based analysis for metabolomic profiling identifies an elevated γ-aminobutyric acid (GABA) to glutamate (Glu) ratio as a metabolic signature of ASD, independent of age and gender. In the validating cohort, we affirm the GABA/Glu ratio as an ASD diagnostic indicator after adjusting for geography, age, gender, and specific food-consuming frequency. Integrated analysis of metabolomics, 16S rRNA sequencing, and metagenomics reveals a correlation between overrepresented Escherichia and disrupted GABA metabolism. Furthermore, we observe social behavioral impairments in weaning mice transplanted with E. coli, suggesting a potential link to ASD symptomatology. Collectively, these findings provide insights into potential diagnostic and therapeutic strategies aimed at evaluating and restoring gut microbial neurotransmitter homeostasis.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101919"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101919","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiota (GM) alterations have been implicated in autism spectrum disorder (ASD), yet the specific functional architecture remains elusive. Here, employing multi-omics approaches, we investigate stool samples from two distinct cohorts comprising 203 children with mild ASD or typical development. In our screening cohort, regression-based analysis for metabolomic profiling identifies an elevated γ-aminobutyric acid (GABA) to glutamate (Glu) ratio as a metabolic signature of ASD, independent of age and gender. In the validating cohort, we affirm the GABA/Glu ratio as an ASD diagnostic indicator after adjusting for geography, age, gender, and specific food-consuming frequency. Integrated analysis of metabolomics, 16S rRNA sequencing, and metagenomics reveals a correlation between overrepresented Escherichia and disrupted GABA metabolism. Furthermore, we observe social behavioral impairments in weaning mice transplanted with E. coli, suggesting a potential link to ASD symptomatology. Collectively, these findings provide insights into potential diagnostic and therapeutic strategies aimed at evaluating and restoring gut microbial neurotransmitter homeostasis.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.