Unveiling the Reaction Mechanism of Diels-Alder Cycloadditions between 2,5-Dimethylfuran and Ethylene Derivatives Using Topological Tools.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mohamed Chellegui, Abel Idrice Adjieufack, Mahmoud Trabelsi, Vincent Liégeois, Benoît Robert Champagne
{"title":"Unveiling the Reaction Mechanism of Diels-Alder Cycloadditions between 2,5-Dimethylfuran and Ethylene Derivatives Using Topological Tools.","authors":"Mohamed Chellegui, Abel Idrice Adjieufack, Mahmoud Trabelsi, Vincent Liégeois, Benoît Robert Champagne","doi":"10.1002/cphc.202400896","DOIUrl":null,"url":null,"abstract":"<p><p>The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants. The difference of electrophilicity drives also the global electron density transfer at the transition state and the asynchronicity of the reaction, as evaluated by the difference of carbon-carbon bond lengths in the transition state. Then, Bonding Evolution Theory shows that the activation of the double bond of ethylene by an electron-withdrawing group changes the reaction mechanism from a one-step synchronous process to a one-step asynchronous process. Generally, the endo pathway is kinetically favored but, thermodynamically, it is the exo pathway. Finally, using the Distortion/Interaction-Activation Strain, it is shown that the endo/exo selectivity is mostly driven by the differences of interaction energies.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400896"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400896","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants. The difference of electrophilicity drives also the global electron density transfer at the transition state and the asynchronicity of the reaction, as evaluated by the difference of carbon-carbon bond lengths in the transition state. Then, Bonding Evolution Theory shows that the activation of the double bond of ethylene by an electron-withdrawing group changes the reaction mechanism from a one-step synchronous process to a one-step asynchronous process. Generally, the endo pathway is kinetically favored but, thermodynamically, it is the exo pathway. Finally, using the Distortion/Interaction-Activation Strain, it is shown that the endo/exo selectivity is mostly driven by the differences of interaction energies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信