Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0219748
Jianpeng Ding, Youming Lei, Michael Small
{"title":"Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.","authors":"Jianpeng Ding, Youming Lei, Michael Small","doi":"10.1063/5.0219748","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators. The proposed method is model-free, in contrast to the control schemes that require complete knowledge of the system equations. We test the method on the locally coupled Kuramoto oscillators and the nonlocally coupled FitzHugh-Nagumo model. Results show that the control is independent of initial conditions and coupling schemes. Not only the single-headed chimera, but also the multi-headed chimera and even the alternating chimera can be obtained by the method, and only the desired position needs to be changed. Beyond that, we discuss the influence of hyper-parameters, demonstrate the universality of the method to network sizes, and show that the proposed method can stabilize the drift of chimera and prevent its collapse in small networks.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0219748","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators. The proposed method is model-free, in contrast to the control schemes that require complete knowledge of the system equations. We test the method on the locally coupled Kuramoto oscillators and the nonlocally coupled FitzHugh-Nagumo model. Results show that the control is independent of initial conditions and coupling schemes. Not only the single-headed chimera, but also the multi-headed chimera and even the alternating chimera can be obtained by the method, and only the desired position needs to be changed. Beyond that, we discuss the influence of hyper-parameters, demonstrate the universality of the method to network sizes, and show that the proposed method can stabilize the drift of chimera and prevent its collapse in small networks.

利用基于软行为批判的强化学习,驯服耦合振荡器中的 "嵌合体"。
我们提出了一种基于深度强化学习(特别是软行为者批评)的通用方法来控制耦合振荡器中的嵌合体状态。在强化学习框架中,通过最大化累积奖励的期望来学习控制策略。借助局部序参量,我们设计了一类控制嵌合体状态的奖励函数,将相干域和非相干域的空间位置限制在振子的任意期望的横向位置。与需要完全了解系统方程的控制方案相比,所提出的方法是无模型的。我们在局部耦合的Kuramoto振子和非局部耦合的FitzHugh-Nagumo模型上验证了该方法。结果表明,该控制与初始条件和耦合方式无关。该方法不仅可以获得单头嵌合体,而且可以获得多头嵌合体,甚至可以获得交替嵌合体,只需改变所需的位置即可。除此之外,我们还讨论了超参数的影响,证明了该方法对网络大小的通用性,并表明该方法可以稳定嵌合体的漂移,防止其在小型网络中崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信