Modeling shock propagation and resilience in financial temporal networks.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0244665
Fabrizio Lillo, Giorgio Rizzini
{"title":"Modeling shock propagation and resilience in financial temporal networks.","authors":"Fabrizio Lillo, Giorgio Rizzini","doi":"10.1063/5.0244665","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling how a shock propagates in a temporal network and how the system relaxes back to equilibrium is challenging but important in many applications, such as financial systemic risk. Most studies, so far, have focused on shocks hitting a link of the network, while often it is the node and its propensity to be connected that are affected by a shock. Using the configuration model-a specific exponential random graph model-as a starting point, we propose a vector autoregressive (VAR) framework to analytically compute the Impulse Response Function (IRF) of a network metric conditional to a shock on a node. Unlike the standard VAR, the model is a nonlinear function of the shock size and the IRF depends on the state of the network at the shock time. We propose a novel econometric estimation method that combines the maximum likelihood estimation and Kalman filter to estimate the dynamics of the latent parameters and compute the IRF, and we apply the proposed methodology to the dynamical network describing the electronic market of interbank deposit.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0244665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling how a shock propagates in a temporal network and how the system relaxes back to equilibrium is challenging but important in many applications, such as financial systemic risk. Most studies, so far, have focused on shocks hitting a link of the network, while often it is the node and its propensity to be connected that are affected by a shock. Using the configuration model-a specific exponential random graph model-as a starting point, we propose a vector autoregressive (VAR) framework to analytically compute the Impulse Response Function (IRF) of a network metric conditional to a shock on a node. Unlike the standard VAR, the model is a nonlinear function of the shock size and the IRF depends on the state of the network at the shock time. We propose a novel econometric estimation method that combines the maximum likelihood estimation and Kalman filter to estimate the dynamics of the latent parameters and compute the IRF, and we apply the proposed methodology to the dynamical network describing the electronic market of interbank deposit.

金融时间网络中的冲击传播和弹性建模。
模拟冲击如何在时间网络中传播以及系统如何放松到平衡是具有挑战性的,但在许多应用中是重要的,例如金融系统风险。到目前为止,大多数研究都集中在打击网络链路的冲击上,而通常是节点及其连接倾向受到冲击的影响。以配置模型(一种特定的指数随机图模型)为出发点,我们提出了一个向量自回归(VAR)框架来解析计算节点冲击条件下网络度量的脉冲响应函数(IRF)。与标准VAR不同,该模型是冲击大小的非线性函数,IRF取决于冲击时网络的状态。本文提出了一种结合极大似然估计和卡尔曼滤波的新型计量估计方法来估计潜在参数的动态变化并计算IRF,并将该方法应用于描述银行间存款电子市场的动态网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信