Electrolyte design weakens lithium-ion solvation for a fast-charging and long-cycling Si anode.

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Min Li, Shuai Li, Dong Yan, Yuhao Ma, Xiaobin Niu, Liping Wang
{"title":"Electrolyte design weakens lithium-ion solvation for a fast-charging and long-cycling Si anode.","authors":"Min Li, Shuai Li, Dong Yan, Yuhao Ma, Xiaobin Niu, Liping Wang","doi":"10.1039/d4sc08125k","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li<sup>+</sup> but with sufficiently high relative dielectric constants. By weakening the interaction between Li<sup>+</sup> and the solvent, the energy barrier for the Li<sup>+</sup> desolvation process is lowered, while ensuring the conductivity and diffusion of Li<sup>+</sup>. As a result, the silicon-carbon anode with the optimized electrolyte exhibits excellent cycling and rate performance, and can work reversibly with a high capacity of 1709.1 mAh g<sup>-1</sup> that proceeds for over 250 cycles and retains 85.2% of its capacity at 0.2C. Furthermore, the Si/C‖LiFePO<sub>4</sub> (LFP) full cell shows an extended service life of more than 500 cycles. This work offers valuable insights into the design of weakly solvating electrolytes for high-performance Si-based batteries.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc08125k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li+ but with sufficiently high relative dielectric constants. By weakening the interaction between Li+ and the solvent, the energy barrier for the Li+ desolvation process is lowered, while ensuring the conductivity and diffusion of Li+. As a result, the silicon-carbon anode with the optimized electrolyte exhibits excellent cycling and rate performance, and can work reversibly with a high capacity of 1709.1 mAh g-1 that proceeds for over 250 cycles and retains 85.2% of its capacity at 0.2C. Furthermore, the Si/C‖LiFePO4 (LFP) full cell shows an extended service life of more than 500 cycles. This work offers valuable insights into the design of weakly solvating electrolytes for high-performance Si-based batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信