{"title":"Hovering hawkmoths exploit unsteady circulation to produce aerodynamic force.","authors":"Yun Liu, Biao Li, Deli Zhou","doi":"10.1098/rsbl.2024.0619","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < <i>T</i><sup>*</sup> < 0.455, where both the vortex loop circulation and loop size data are available. The force analysis reveals that the unsteady circulation-induced aerodynamic force dominates the overall force production and contributes 67% of the total force while the vortex loop size variation and added mass effect-induced aerodynamic forces only count for 25% and 8%, respectively. These findings suggest the hawkmoth primarily relies on unsteady circulation to generate aerodynamic forces.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":"21 1","pages":"20240619"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0619","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < T* < 0.455, where both the vortex loop circulation and loop size data are available. The force analysis reveals that the unsteady circulation-induced aerodynamic force dominates the overall force production and contributes 67% of the total force while the vortex loop size variation and added mass effect-induced aerodynamic forces only count for 25% and 8%, respectively. These findings suggest the hawkmoth primarily relies on unsteady circulation to generate aerodynamic forces.
期刊介绍:
Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.