TP53 gene status can promote sensitivity and resistance to chemotherapeutic drugs and small molecule signal transduction inhibitors.

Q1 Biochemistry, Genetics and Molecular Biology
James A McCubrey, Matilde Y Follo, Stefano Ratti, Alberto M Martelli, Lucia Manzoli, Giuseppa Augello, Melchiorre Cervello, Lucio Cocco
{"title":"TP53 gene status can promote sensitivity and resistance to chemotherapeutic drugs and small molecule signal transduction inhibitors.","authors":"James A McCubrey, Matilde Y Follo, Stefano Ratti, Alberto M Martelli, Lucia Manzoli, Giuseppa Augello, Melchiorre Cervello, Lucio Cocco","doi":"10.1016/j.jbior.2024.101073","DOIUrl":null,"url":null,"abstract":"<p><p>TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost. This type of mutations is often dominant-negative (DN) mutations as they can interfere with the normal functions of WT-TP53 which acts as a tetramer. These mutations can result in altered gene expression patterns. There are some TP53 mutations which may lack some of the normal functions of TP53 but have additional functions; these types of mutations are called gain of function (GOF) mutations. There is another class of TP53 mutations, they are TP53 null mutations as the cells have deleted the TP53 gene (TP53-null). Although TP53 mutations were initially considered undruggable, other approaches have been developed to increase TP53 activity. One approach was to develop mouse double minute 2 homolog (MDM2) inhibitors as MDM2 suppresses TP53 activity. In addition, there have been mutant TP53 reactivators created, which will at least partially restore some of the critical growth suppressing effects of TP53. Some of these mutant TP53 reactivators have shown promise in clinical trial in certain types of cancer patients, especially myelodysplastic syndrome (MDS). In this review, we summarize the development of novel TP53 reactivators and MDM2 inhibitors. Both approaches are aimed at increasing or restoring TP53 activity. Attempts to increase TP53 activity in various TP53 mutant tumors could increase therapy of multiple deadly diseases.</p>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":" ","pages":"101073"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbior.2024.101073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost. This type of mutations is often dominant-negative (DN) mutations as they can interfere with the normal functions of WT-TP53 which acts as a tetramer. These mutations can result in altered gene expression patterns. There are some TP53 mutations which may lack some of the normal functions of TP53 but have additional functions; these types of mutations are called gain of function (GOF) mutations. There is another class of TP53 mutations, they are TP53 null mutations as the cells have deleted the TP53 gene (TP53-null). Although TP53 mutations were initially considered undruggable, other approaches have been developed to increase TP53 activity. One approach was to develop mouse double minute 2 homolog (MDM2) inhibitors as MDM2 suppresses TP53 activity. In addition, there have been mutant TP53 reactivators created, which will at least partially restore some of the critical growth suppressing effects of TP53. Some of these mutant TP53 reactivators have shown promise in clinical trial in certain types of cancer patients, especially myelodysplastic syndrome (MDS). In this review, we summarize the development of novel TP53 reactivators and MDM2 inhibitors. Both approaches are aimed at increasing or restoring TP53 activity. Attempts to increase TP53 activity in various TP53 mutant tumors could increase therapy of multiple deadly diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biological regulation
Advances in biological regulation Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
0.00%
发文量
41
审稿时长
17 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信