Thomas R Lane, David D Koebel, Eric A Lucas, Sean Cleary, Robert Moyer, Sean Ekins
{"title":"Metabolic Characterization of Sarin, Cyclosarin, and Novichoks (A-230, A-232) in Human Liver Microsomes.","authors":"Thomas R Lane, David D Koebel, Eric A Lucas, Sean Cleary, Robert Moyer, Sean Ekins","doi":"10.1021/acs.chemrestox.4c00538","DOIUrl":null,"url":null,"abstract":"<p><p>We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability (<i>t</i><sub>1/2</sub> = 1.4 h). The addition of ethylenediaminetetraacetic acid (EDTA), which inhibits paraoxonase-1 (PON1), reduced the metabolism of GB in HLM suggesting at least a partial role in its metabolism (<i>t</i><sub>1/2</sub> = 2.6 h). The absence of NADPH (a requirement for CYP activity) had a major impact on metabolism, suggesting a role of likely CYP-mediated metabolism, which was rescued with the later addition of NADPH at 4 h. GF was also metabolized readily in HLM (Control <i>t</i><sub>1/2</sub> = 9.7 h; HLM <i>t</i><sub>1/2</sub> = 0.5 h), and this metabolism was mitigated by the addition of EDTA (<i>t</i><sub>1/2</sub> (fast) = 0.7 h, <i>t</i><sub>1/2</sub> (slow) = 4.0 h), suggesting a PON1 role in the metabolism of GF. GF in HLMs also showed a reduced metabolism without NADPH, suggesting a CYP-mediated role. We have described for the first time the clearance of A-230 in HLM (<i>t</i><sub>1/2</sub> (fast) = 0.9 h, <i>t</i><sub>1/2</sub> (slow) = 26.5 h), with a significantly decreased stability from the control (<i>t</i><sub>1/2</sub> = 48.3 h) and with the formation of the A-230 acid as the major metabolite. EDTA also reduced the metabolism of A-230 in HLMs (<i>t</i><sub>1/2</sub> (fast) = 0.8 h, <i>t</i><sub>1/2</sub> (slow) = 62 h). A-232 metabolism was also HLM-dependent (<i>t</i><sub>1/2</sub> (fast) = 1.2 h, <i>t</i><sub>1/2</sub> (slow) = 1190 h), although overall it was dramatically more stable in the control (<i>t</i><sub>1/2</sub> = 2,300 h). The metabolism of A-232 in HLMs also showed some inhibition by EDTA (<i>t</i><sub>1/2</sub> (fast) = 0.5 h, <i>t</i><sub>1/2</sub> (slow) = 1480 h).</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"353-360"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00538","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability (t1/2 = 1.4 h). The addition of ethylenediaminetetraacetic acid (EDTA), which inhibits paraoxonase-1 (PON1), reduced the metabolism of GB in HLM suggesting at least a partial role in its metabolism (t1/2 = 2.6 h). The absence of NADPH (a requirement for CYP activity) had a major impact on metabolism, suggesting a role of likely CYP-mediated metabolism, which was rescued with the later addition of NADPH at 4 h. GF was also metabolized readily in HLM (Control t1/2 = 9.7 h; HLM t1/2 = 0.5 h), and this metabolism was mitigated by the addition of EDTA (t1/2 (fast) = 0.7 h, t1/2 (slow) = 4.0 h), suggesting a PON1 role in the metabolism of GF. GF in HLMs also showed a reduced metabolism without NADPH, suggesting a CYP-mediated role. We have described for the first time the clearance of A-230 in HLM (t1/2 (fast) = 0.9 h, t1/2 (slow) = 26.5 h), with a significantly decreased stability from the control (t1/2 = 48.3 h) and with the formation of the A-230 acid as the major metabolite. EDTA also reduced the metabolism of A-230 in HLMs (t1/2 (fast) = 0.8 h, t1/2 (slow) = 62 h). A-232 metabolism was also HLM-dependent (t1/2 (fast) = 1.2 h, t1/2 (slow) = 1190 h), although overall it was dramatically more stable in the control (t1/2 = 2,300 h). The metabolism of A-232 in HLMs also showed some inhibition by EDTA (t1/2 (fast) = 0.5 h, t1/2 (slow) = 1480 h).
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.