Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiping Yang, Qian Jia, Xinwen Ou, Fang Sun, Chaoqi Song, Tingxing Zhao, Ryan T. K. Kwok, Jianwei Sun, Zheng Zhao, Jacky W. Y. Lam, Zhongliang Wang, Ben Zhong Tang
{"title":"Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics","authors":"Shiping Yang, Qian Jia, Xinwen Ou, Fang Sun, Chaoqi Song, Tingxing Zhao, Ryan T. K. Kwok, Jianwei Sun, Zheng Zhao, Jacky W. Y. Lam, Zhongliang Wang, Ben Zhong Tang","doi":"10.1021/jacs.4c15216","DOIUrl":null,"url":null,"abstract":"The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor–acceptor (D–A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short. Therefore, a research paradigm from twisted configuration to near-planar structure featuring a high ε is urgently needed for AIEgens development. Herein, by introducing the strategy of “motion and stillness” into a highly planar A–D–A skeleton, we successfully developed a near-infrared (NIR)-II AIEgen of Y5-2BO-2BTF, which boasts an impressive ε of 1.06 × 10<sup>5</sup> M<sup>–1</sup> cm<sup>–1</sup> and a photothermal conversion efficiency (PCE) of 77.8%. The modification of steric hindrance on the benzene ring in the acceptor unit of the aggregation-caused quenching counterpart Y5-2BO, to a <i>meta</i>-CF<sub>3</sub>-substituted naphthyl, leads to reversely staggered packing and various intermolecular noncovalent conformational locks in Y5-2BO-2BTF (“stillness”). Furthermore, the −CF<sub>3</sub> moiety acted as a flexible motion unit with an ultralow energy barrier, significantly facilitating the photothermal process in loose Y5-2BO-2BTF aggregates (“motion”). Accordingly, Y5-2BO-2BTF nanoparticles enabled tumor eradication and pulmonary metastasis inhibition through NIR-II fluorescence-photoacoustic-photothermal imaging-navigated type I photodynamic-photothermal therapy. This work provides the first evidence that the highly planar conformation with a reversely staggered stacking arrangement could serve as a novel molecular design direction for AIEgens, shedding new light on constructing superior phototheranostic agents for bioimaging and cancer therapy.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"92 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor–acceptor (D–A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short. Therefore, a research paradigm from twisted configuration to near-planar structure featuring a high ε is urgently needed for AIEgens development. Herein, by introducing the strategy of “motion and stillness” into a highly planar A–D–A skeleton, we successfully developed a near-infrared (NIR)-II AIEgen of Y5-2BO-2BTF, which boasts an impressive ε of 1.06 × 105 M–1 cm–1 and a photothermal conversion efficiency (PCE) of 77.8%. The modification of steric hindrance on the benzene ring in the acceptor unit of the aggregation-caused quenching counterpart Y5-2BO, to a meta-CF3-substituted naphthyl, leads to reversely staggered packing and various intermolecular noncovalent conformational locks in Y5-2BO-2BTF (“stillness”). Furthermore, the −CF3 moiety acted as a flexible motion unit with an ultralow energy barrier, significantly facilitating the photothermal process in loose Y5-2BO-2BTF aggregates (“motion”). Accordingly, Y5-2BO-2BTF nanoparticles enabled tumor eradication and pulmonary metastasis inhibition through NIR-II fluorescence-photoacoustic-photothermal imaging-navigated type I photodynamic-photothermal therapy. This work provides the first evidence that the highly planar conformation with a reversely staggered stacking arrangement could serve as a novel molecular design direction for AIEgens, shedding new light on constructing superior phototheranostic agents for bioimaging and cancer therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信