Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Atsushi Yoshimori, Jürgen Bajorath
{"title":"Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing","authors":"Atsushi Yoshimori, Jürgen Bajorath","doi":"10.1186/s13321-025-00951-3","DOIUrl":null,"url":null,"abstract":"Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure–activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing. The methodology comprehensively accounts for substituent similarity, identifies non-classical bioisosteres, captures substituent-property relationships, and generates accurate AS alignments. Context-dependent similarity assessment is conceptually novel in computational medicinal chemistry and should also be of interest for other applications. Scientific contribution A method is reported to systematically search for and align analogue series with SAR transfer potential. Central to the approach is the assessment of context-dependent similarity for substituents, a new concept in cheminformatics, which is based upon vector embeddings and word pair relationships adapted from natural language processing.","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"3 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13321-025-00951-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure–activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing. The methodology comprehensively accounts for substituent similarity, identifies non-classical bioisosteres, captures substituent-property relationships, and generates accurate AS alignments. Context-dependent similarity assessment is conceptually novel in computational medicinal chemistry and should also be of interest for other applications. Scientific contribution A method is reported to systematically search for and align analogue series with SAR transfer potential. Central to the approach is the assessment of context-dependent similarity for substituents, a new concept in cheminformatics, which is based upon vector embeddings and word pair relationships adapted from natural language processing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信