Claudio Agnorelli, Alessandra Cinti, Giovanni Barillà, Francesco Lomi, Adriano Scoccia, Alberto Benelli, Francesco Neri, Carmelo Luca Smeralda, Alessandro Cuomo, Emiliano Santarnecchi, Elisa Tatti, Kate Godfrey, Francesca Tarantino, Andrea Fagiolini, Simone Rossi
{"title":"Neurophysiological correlates of ketamine-induced dissociative state in bipolar disorder: insights from real-world clinical settings","authors":"Claudio Agnorelli, Alessandra Cinti, Giovanni Barillà, Francesco Lomi, Adriano Scoccia, Alberto Benelli, Francesco Neri, Carmelo Luca Smeralda, Alessandro Cuomo, Emiliano Santarnecchi, Elisa Tatti, Kate Godfrey, Francesca Tarantino, Andrea Fagiolini, Simone Rossi","doi":"10.1038/s41380-025-02889-2","DOIUrl":null,"url":null,"abstract":"<p>Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine’s effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers. A cohort of 30 BD (F = 12) inpatients with TRD undergoing ketamine treatment was included in the study. EEG recordings were performed during one of the ketamine infusions with doses ranging from 0.5 to 1 mg/kg, and subjective effects were evaluated using the Clinician-Administered Dissociative States Scale (CADSS). Both rhythmic and arrhythmic features were extrapolated from the EEG signal. Patients who exhibited a clinical response to ketamine treatment within one week were classified as early responders (ER), whereas those who responded later were categorized as late responders (LR). Ketamine reduced low-frequency spectral power density while increasing gamma oscillatory power. Additionally, ketamine flattened the slope of the power spectra, indicating altered scale-free dynamics. Ketamine also increased brain signal entropy, particularly in high-frequency bands. Notably, LR exhibited greater EEG changes compared to ER, suggesting endophenotypic differences in treatment sensitivity. These findings provide valuable insights into the neurophysiological effects of ketamine in BD depression, highlighting the utility of EEG biomarkers for assessing ketamine’s therapeutic mechanisms in real-world clinical settings. Understanding the neural correlates of ketamine response may contribute to personalized treatment approaches and improved management of mood disorders.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"16 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02889-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine’s effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers. A cohort of 30 BD (F = 12) inpatients with TRD undergoing ketamine treatment was included in the study. EEG recordings were performed during one of the ketamine infusions with doses ranging from 0.5 to 1 mg/kg, and subjective effects were evaluated using the Clinician-Administered Dissociative States Scale (CADSS). Both rhythmic and arrhythmic features were extrapolated from the EEG signal. Patients who exhibited a clinical response to ketamine treatment within one week were classified as early responders (ER), whereas those who responded later were categorized as late responders (LR). Ketamine reduced low-frequency spectral power density while increasing gamma oscillatory power. Additionally, ketamine flattened the slope of the power spectra, indicating altered scale-free dynamics. Ketamine also increased brain signal entropy, particularly in high-frequency bands. Notably, LR exhibited greater EEG changes compared to ER, suggesting endophenotypic differences in treatment sensitivity. These findings provide valuable insights into the neurophysiological effects of ketamine in BD depression, highlighting the utility of EEG biomarkers for assessing ketamine’s therapeutic mechanisms in real-world clinical settings. Understanding the neural correlates of ketamine response may contribute to personalized treatment approaches and improved management of mood disorders.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.