Clarify Confused Nodes via Separated Learning

Jiajun Zhou;Shengbo Gong;Xuanze Chen;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang
{"title":"Clarify Confused Nodes via Separated Learning","authors":"Jiajun Zhou;Shengbo Gong;Xuanze Chen;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang","doi":"10.1109/TPAMI.2025.3528738","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (<italic>NC</i>), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of <italic>NC</i> values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for <bold>N</b>eighborhood <bold>C</b>onfusion-guided <bold>G</b>raph <bold>C</b>onvolutional <bold>N</b>etwork (<bold>NCGCN</b>), in which nodes are grouped by their <italic>NC</i> values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2882-2896"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (NC), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of NC values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for Neighborhood Confusion-guided Graph Convolutional Network (NCGCN), in which nodes are grouped by their NC values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods.
通过分离学习澄清困惑的节点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信