{"title":"Angle-Independent Blood Flow Velocity Measurement With Ultrasound Speckle Decorrelation Analysis","authors":"Yongchao Wang;Wenkai Chen;Yetao He;Jianbo Tang","doi":"10.1109/TMI.2025.3529033","DOIUrl":null,"url":null,"abstract":"Precise measurement of the blood flow velocity in major arteries is important for the assessment of circulation dysfunction but challenging when using a one-dimensional (1D) ultrasound transducer array. Current available ultrasound velocimetry methods are susceptible to the probe-to-vessel angle and require the vessels to be well-aligned within the imaging plane of the 1D transducer array. In this study, a novel angle-independent velocimetry (VT-vUS) based on the ultrasound speckle decorrelation analysis of the ultrasound field signal is proposed to measure the blood flow velocity using a conventional 1D ultrasound transducer array. We first introduced the principle and evaluated this technique with numerical simulation and phantom experiments, which demonstrated that VT-vUS can accurately reconstruct the velocity magnitude of blood flow at arbitrary probe-to-vessel angles for different preset flow speeds (up to ~2.5 m/s). Further, we applied VT-vUS to measure the pulsatile flow of the radial artery and carotid artery in a healthy volunteer. Results show that the absolute velocity profiles obtained with VT-vUS at different probe-to-vessel angles have high consistency and agree well with the absolute speed obtained with the color Doppler-corrected velocimetry throughout the cardiac cycle. With the ability to alleviate the dependency on probe-to-vessel angle, VT-vUS has the potential for circulation-related disease screening in clinical practices.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 5","pages":"2283-2294"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10841933/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Precise measurement of the blood flow velocity in major arteries is important for the assessment of circulation dysfunction but challenging when using a one-dimensional (1D) ultrasound transducer array. Current available ultrasound velocimetry methods are susceptible to the probe-to-vessel angle and require the vessels to be well-aligned within the imaging plane of the 1D transducer array. In this study, a novel angle-independent velocimetry (VT-vUS) based on the ultrasound speckle decorrelation analysis of the ultrasound field signal is proposed to measure the blood flow velocity using a conventional 1D ultrasound transducer array. We first introduced the principle and evaluated this technique with numerical simulation and phantom experiments, which demonstrated that VT-vUS can accurately reconstruct the velocity magnitude of blood flow at arbitrary probe-to-vessel angles for different preset flow speeds (up to ~2.5 m/s). Further, we applied VT-vUS to measure the pulsatile flow of the radial artery and carotid artery in a healthy volunteer. Results show that the absolute velocity profiles obtained with VT-vUS at different probe-to-vessel angles have high consistency and agree well with the absolute speed obtained with the color Doppler-corrected velocimetry throughout the cardiac cycle. With the ability to alleviate the dependency on probe-to-vessel angle, VT-vUS has the potential for circulation-related disease screening in clinical practices.