Zi-Jun Liang, Fang-Di Dong, Le Ye, Kai Zheng, Ding-Yi Hu, Xi Feng, Wen-Yu Su, Zhi-Shuo Wang, Mu-Yang Zhou, Zi-Luo Fang, Dong-Dong Zhou, Jie-Peng Zhang, Xiao-Ming Chen
{"title":"Introducing halogen-bonded gates in zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation","authors":"Zi-Jun Liang, Fang-Di Dong, Le Ye, Kai Zheng, Ding-Yi Hu, Xi Feng, Wen-Yu Su, Zhi-Shuo Wang, Mu-Yang Zhou, Zi-Luo Fang, Dong-Dong Zhou, Jie-Peng Zhang, Xiao-Ming Chen","doi":"10.1039/d4sc06624c","DOIUrl":null,"url":null,"abstract":"The separation of C<small><sub>6</sub></small> cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical separations in the petrochemical industries. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C‒Br‧‧‧N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113±2; purity up to 98%+), which is the highest record for benzene/cyclohexane/cyclohexene separation to date. Single-crystal diffraction analyses and computational simulations revealed that halogen bonds play a critical role in the gating and diffusion process, which is the first example of halogen-bonding controlled gating for highly effective adsorptive separation.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"24 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06624c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The separation of C6 cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical separations in the petrochemical industries. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C‒Br‧‧‧N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113±2; purity up to 98%+), which is the highest record for benzene/cyclohexane/cyclohexene separation to date. Single-crystal diffraction analyses and computational simulations revealed that halogen bonds play a critical role in the gating and diffusion process, which is the first example of halogen-bonding controlled gating for highly effective adsorptive separation.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.