tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Lang Zeng, Jipeng Zhang, Wei Chen, Ying Ding
{"title":"tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.","authors":"Lang Zeng, Jipeng Zhang, Wei Chen, Ying Ding","doi":"10.1093/jrsssc/qlae051","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome. Moreover, by concurrently integrating a convolutional neural network with the survival network, tdCoxSNN can directly take longitudinal images as input. We evaluate and compare our proposed method with joint modelling and landmarking approaches through extensive simulations. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study, in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis disease, where multiple laboratory tests were longitudinally collected to predict the time-to-liver transplant. Our approach demonstrates commendable predictive performance in both simulation studies and the analysis of the two real datasets.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"74 1","pages":"187-203"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome. Moreover, by concurrently integrating a convolutional neural network with the survival network, tdCoxSNN can directly take longitudinal images as input. We evaluate and compare our proposed method with joint modelling and landmarking approaches through extensive simulations. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study, in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis disease, where multiple laboratory tests were longitudinally collected to predict the time-to-liver transplant. Our approach demonstrates commendable predictive performance in both simulation studies and the analysis of the two real datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信