Karen Mys, Luke Visscher, Sara Lindenmann, Torsten Pastor, Paolo Antonacci, Matthias Knobe, Martin Jaeger, Simon Lambert, Peter Varga
{"title":"Shape-matching-based fracture reduction aid concept exemplified on the proximal humerus-a pilot study.","authors":"Karen Mys, Luke Visscher, Sara Lindenmann, Torsten Pastor, Paolo Antonacci, Matthias Knobe, Martin Jaeger, Simon Lambert, Peter Varga","doi":"10.1007/s11548-024-03318-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Optimizing fracture reduction quality is key to achieve successful osteosynthesis, especially for epimetaphyseal regions such as the proximal humerus (PH), but can be challenging, partly due to the lack of a clear endpoint. We aimed to develop the prototype for a novel intraoperative C-arm-based aid to facilitate true anatomical reduction of fractures of the PH.</p><p><strong>Methods: </strong>The proposed method designates the reduced endpoint position of fragments by superimposing the outer boundary of the premorbid bone shape on intraoperative C-arm images, taking the mirrored intact contralateral PH from the preoperative CT scan as a surrogate. The accuracy of the algorithm was tested on 60 synthetic C-arm images created from the preoperative CT images of 20 complex PH fracture cases (Dataset A) and on 12 real C-arm images of a prefractured human anatomical specimen (Dataset B). The predicted outer boundary shape was compared with the known exact solution by (1) a calculated matching error and (2) two experienced shoulder trauma surgeons.</p><p><strong>Results: </strong>A prediction accuracy of 88% (with 73% 'good') was achieved according to the calculation method and an 87% accuracy (68% 'good') by surgeon assessment in Dataset A. Accuracy was 100% by both assessments for Dataset B.</p><p><strong>Conclusion: </strong>By seamlessly integrating into the standard perioperative workflow and imaging, the intuitive shape-matching-based aid, once developed as a medical device, has the potential to optimize the accuracy of the reduction of PH fractures while reducing the number of X-rays and surgery time. Further studies are required to demonstrate the applicability and efficacy of this method in optimizing fracture reduction quality.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03318-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Optimizing fracture reduction quality is key to achieve successful osteosynthesis, especially for epimetaphyseal regions such as the proximal humerus (PH), but can be challenging, partly due to the lack of a clear endpoint. We aimed to develop the prototype for a novel intraoperative C-arm-based aid to facilitate true anatomical reduction of fractures of the PH.
Methods: The proposed method designates the reduced endpoint position of fragments by superimposing the outer boundary of the premorbid bone shape on intraoperative C-arm images, taking the mirrored intact contralateral PH from the preoperative CT scan as a surrogate. The accuracy of the algorithm was tested on 60 synthetic C-arm images created from the preoperative CT images of 20 complex PH fracture cases (Dataset A) and on 12 real C-arm images of a prefractured human anatomical specimen (Dataset B). The predicted outer boundary shape was compared with the known exact solution by (1) a calculated matching error and (2) two experienced shoulder trauma surgeons.
Results: A prediction accuracy of 88% (with 73% 'good') was achieved according to the calculation method and an 87% accuracy (68% 'good') by surgeon assessment in Dataset A. Accuracy was 100% by both assessments for Dataset B.
Conclusion: By seamlessly integrating into the standard perioperative workflow and imaging, the intuitive shape-matching-based aid, once developed as a medical device, has the potential to optimize the accuracy of the reduction of PH fractures while reducing the number of X-rays and surgery time. Further studies are required to demonstrate the applicability and efficacy of this method in optimizing fracture reduction quality.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.