NUCLEAR RNA-BINDING PROTEINS MEET CYTOPLASMIC VIRUSES.

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-01-13 DOI:10.1261/rna.080313.124
Alfredo Castello, Wael Kamel
{"title":"NUCLEAR RNA-BINDING PROTEINS MEET CYTOPLASMIC VIRUSES.","authors":"Alfredo Castello, Wael Kamel","doi":"10.1261/rna.080313.124","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors. For instance, the U2 small nuclear ribonucleoprotein (snRNP) relocates to the cytoplasm in infected cells and uses U2 snRNA to interact with viral genomes, repressing viral replication and gene expression. Here, we describe these emerging host-virus interactions and discuss the remaining questions to elucidate their antiviral mechanisms.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080313.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors. For instance, the U2 small nuclear ribonucleoprotein (snRNP) relocates to the cytoplasm in infected cells and uses U2 snRNA to interact with viral genomes, repressing viral replication and gene expression. Here, we describe these emerging host-virus interactions and discuss the remaining questions to elucidate their antiviral mechanisms.

核 RNA 结合蛋白与细胞质病毒相遇。
细胞质病毒与核孔复合体和核输入/输出机制相互作用,影响核-细胞质运输。这可能导致核rna结合蛋白(rbp)在细胞质中的选择性积累。开创性的研究表明,重新定位的rbp是一种针对病毒的内在防御机制,涉及RNA输出、剪接和核核因子。例如,U2小核核糖核蛋白(snRNP)重新定位到感染细胞的细胞质中,并利用U2 snRNA与病毒基因组相互作用,抑制病毒复制和基因表达。在这里,我们描述了这些新出现的宿主-病毒相互作用,并讨论了剩余的问题,以阐明它们的抗病毒机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信