Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides.

Q4 Biochemistry, Genetics and Molecular Biology
Jorge D Calderin, Chi Zhang, Timothy J C Tan, Nicholas C Wu, Rutilio Fratti
{"title":"Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides.","authors":"Jorge D Calderin, Chi Zhang, Timothy J C Tan, Nicholas C Wu, Rutilio Fratti","doi":"10.1007/978-1-0716-4314-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies. Unlike surface plasmon resonance (SPR), BLI is an open system that does not require microfluidics, which eliminates issues that result from clogging and changes in viscosity. Importantly, BLI readings can be completed in minutes and can be formatted for high throughput screening. Here we use biotinylated short chain phosphoinositides and phosphatidic acid bound to streptavidin BLI biosensors to measure the binding of the soluble Qc SNARE Vam7 from Saccharomyces cerevisiae. Unlike most SNAREs, Vam7 lacks a transmembrane domain or lipid anchor to associate with membranes. Instead Vam7 associates to yeast vacuolar membranes using its N-terminal PX domain that binds to phosphatidylinositol 3-phosphate (PI3P) and phosphatidic acid (PA). Using full length Vam7, Vam7<sup>Y42A</sup>, and PX domain alone, we determined and compared the dissociation constants (K<sub>D</sub>) of each to biotinylated PI3P and PA biosensors.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2887 ","pages":"103-117"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4314-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies. Unlike surface plasmon resonance (SPR), BLI is an open system that does not require microfluidics, which eliminates issues that result from clogging and changes in viscosity. Importantly, BLI readings can be completed in minutes and can be formatted for high throughput screening. Here we use biotinylated short chain phosphoinositides and phosphatidic acid bound to streptavidin BLI biosensors to measure the binding of the soluble Qc SNARE Vam7 from Saccharomyces cerevisiae. Unlike most SNAREs, Vam7 lacks a transmembrane domain or lipid anchor to associate with membranes. Instead Vam7 associates to yeast vacuolar membranes using its N-terminal PX domain that binds to phosphatidylinositol 3-phosphate (PI3P) and phosphatidic acid (PA). Using full length Vam7, Vam7Y42A, and PX domain alone, we determined and compared the dissociation constants (KD) of each to biotinylated PI3P and PA biosensors.

利用生物层干涉法(BLI)测量SNAREs和磷酸肌苷的结合亲和力。
生物层干涉法(BLI)是一种利用光学生物传感来分析分子间相互作用的技术。分子相互作用的分析是实时测量的,不需要荧光标签。BLI使用多种形式的一次性生物传感器来结合不同的配体,包括生物素、六组氨酸、GST和抗体的Fc部分。与表面等离子体共振(SPR)不同,BLI是一个开放的系统,不需要微流体,从而消除了堵塞和粘度变化引起的问题。重要的是,BLI读数可以在几分钟内完成,并可以格式化为高通量筛选。本研究利用生物素化的短链磷酸肌苷和磷脂酸与链亲和素BLI生物传感器结合来测量酿酒酵母可溶性Qc SNARE Vam7的结合。与大多数SNAREs不同,Vam7缺乏跨膜结构域或脂质锚点来与膜结合。相反,Vam7通过其n端PX结构域与酵母液泡膜结合,该结构域与磷脂酰肌醇3-磷酸(PI3P)和磷脂酸(PA)结合。利用Vam7、Vam7Y42A和PX的全长结构域,我们测定并比较了它们与生物素化PI3P和PA生物传感器的解离常数(KD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信