Yuanchong Chen, Yaofeng Zhang, Xiaodong Zhang, Xiaoying Wang
{"title":"Characterization of adrenal glands on computed tomography with a 3D V-Net-based model.","authors":"Yuanchong Chen, Yaofeng Zhang, Xiaodong Zhang, Xiaoying Wang","doi":"10.1186/s13244-025-01898-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.</p><p><strong>Methods: </strong>A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance. The other cohort, consisting of 959 patients with pathologically confirmed adrenal lesions (external validation dataset 1), was included for validation of the classification performance of this model. Then, another consecutive cohort of patients with a history of malignancy (N = 479) was used for validation in the screening population (external validation dataset 2). Parameters of sensitivity, accuracy, etc., were used, and the performance of the model was compared to the radiology report in these validation scenes.</p><p><strong>Results: </strong>The DSC of the test set of the segmentation model was 0.900 (0.810-0.965) (median (interquartile range)). The model showed sensitivities and accuracies of 99.7%, 98.3% and 87.2%, 62.2% in external validation datasets 1 and 2, respectively. It showed no significant difference comparing to radiology reports in external validation datasets 1 and lesion-containing groups of external validation datasets 2 (p = 1.000 and p > 0.05, respectively).</p><p><strong>Conclusion: </strong>The 3D V-Net-based segmentation model of adrenal lesions can be used for the binary classification of adrenal glands.</p><p><strong>Critical relevance statement: </strong>A 3D V-Net-based segmentation model of adrenal lesions can be used for the detection of abnormalities of adrenal glands, with a high accuracy in the pre-surgical scene as well as a high sensitivity in the screening scene.</p><p><strong>Key points: </strong>Adrenal lesions may be prone to inter-observer variability in routine diagnostic workflow. The study developed a 3D V-Net-based segmentation model of adrenal lesions with DSC 0.900 in the test set. The model showed high sensitivity and accuracy of abnormalities detection in different scenes.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"17"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01898-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.
Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance. The other cohort, consisting of 959 patients with pathologically confirmed adrenal lesions (external validation dataset 1), was included for validation of the classification performance of this model. Then, another consecutive cohort of patients with a history of malignancy (N = 479) was used for validation in the screening population (external validation dataset 2). Parameters of sensitivity, accuracy, etc., were used, and the performance of the model was compared to the radiology report in these validation scenes.
Results: The DSC of the test set of the segmentation model was 0.900 (0.810-0.965) (median (interquartile range)). The model showed sensitivities and accuracies of 99.7%, 98.3% and 87.2%, 62.2% in external validation datasets 1 and 2, respectively. It showed no significant difference comparing to radiology reports in external validation datasets 1 and lesion-containing groups of external validation datasets 2 (p = 1.000 and p > 0.05, respectively).
Conclusion: The 3D V-Net-based segmentation model of adrenal lesions can be used for the binary classification of adrenal glands.
Critical relevance statement: A 3D V-Net-based segmentation model of adrenal lesions can be used for the detection of abnormalities of adrenal glands, with a high accuracy in the pre-surgical scene as well as a high sensitivity in the screening scene.
Key points: Adrenal lesions may be prone to inter-observer variability in routine diagnostic workflow. The study developed a 3D V-Net-based segmentation model of adrenal lesions with DSC 0.900 in the test set. The model showed high sensitivity and accuracy of abnormalities detection in different scenes.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.