PKCδ germline variants and genetic deletion in mice augment antitumor immunity through regulation of myeloid cells.

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Kyle R Cron, Ayelet Sivan, Keston Aquino-Michaels, Andrea Ziblat, Emily F Higgs, Randy F Sweis, Ruxandra Tonea, Seoho Lee, Thomas F Gajewski
{"title":"PKCδ germline variants and genetic deletion in mice augment antitumor immunity through regulation of myeloid cells.","authors":"Kyle R Cron, Ayelet Sivan, Keston Aquino-Michaels, Andrea Ziblat, Emily F Higgs, Randy F Sweis, Ruxandra Tonea, Seoho Lee, Thomas F Gajewski","doi":"10.1158/2326-6066.CIR-23-0999","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1. Single-cell RNA sequencing revealed myeloid cell expression of Prkcd, and PKCδ deletion caused a shift in macrophage gene expression from an M2-like to an M1-like phenotype. Conditional deletion of PKCδ in myeloid cells recapitulated improved tumor control that was augmented further with anti-PD-L1. Analysis of clinical samples confirmed an association between PRKCD variants and M1/M2 phenotype, as well as between a PKCδ KO-like gene signature and clinical benefit from anti-PD-1. Our results identify PKCδ as a candidate therapeutic target that modulates myeloid cell states.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0999","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1. Single-cell RNA sequencing revealed myeloid cell expression of Prkcd, and PKCδ deletion caused a shift in macrophage gene expression from an M2-like to an M1-like phenotype. Conditional deletion of PKCδ in myeloid cells recapitulated improved tumor control that was augmented further with anti-PD-L1. Analysis of clinical samples confirmed an association between PRKCD variants and M1/M2 phenotype, as well as between a PKCδ KO-like gene signature and clinical benefit from anti-PD-1. Our results identify PKCδ as a candidate therapeutic target that modulates myeloid cell states.

小鼠的PKCδ种系变异和基因缺失通过调节髓细胞增强抗肿瘤免疫。
基于半胚性种系遗传变异与自身免疫性疾病相关的概念,我们推断,通过与更多t细胞浸润肿瘤相关的种系变异,可能会发现癌症免疫治疗的新靶点。在这里,我们报告了在研究与肿瘤免疫基因标记相关的种系多态性时,我们确定了PKCδ作为候选基因。小鼠PKCδ基因缺失可改善内源性抗肿瘤免疫,提高抗pd - l1的功效。单细胞RNA测序显示骨髓细胞表达Prkcd, PKCδ缺失导致巨噬细胞基因表达从m2样表型转变为m1样表型。髓细胞中PKCδ的条件缺失重现了肿瘤控制的改善,抗pd - l1进一步增强了这种控制。临床样本分析证实了PRKCD变异与M1/M2表型之间的关联,以及PKCδ ko样基因标记与抗pd -1的临床益处之间的关联。我们的研究结果确定PKCδ是调节髓细胞状态的候选治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信