{"title":"VirDetect-AI: a residual and convolutional neural network-based metagenomic tool for eukaryotic viral protein identification.","authors":"Alida Zárate, Lorena Díaz-González, Blanca Taboada","doi":"10.1093/bib/bbaf001","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection. However, existing AI-based approaches are primarily binary classifiers, lacking specificity in identifying viral types and reliant on nucleotide sequences. To address these limitations, VirDetect-AI, a novel tool specifically designed for the identification of eukaryotic viruses within metagenomic datasets, is introduced. The VirDetect-AI model employs a combination of convolutional neural networks and residual neural networks to effectively extract hierarchical features and detailed patterns from complex amino acid genomic data. The results demonstrated that the model has outstanding results in all metrics, with a sensitivity of 0.97, a precision of 0.98, and an F1-score of 0.98. VirDetect-AI improves our comprehension of viral ecology and can accurately classify metagenomic sequences into 980 viral protein classes, hence enabling the identification of new viruses. These classes encompass an extensive array of viral genera and families, as well as protein functions and hosts.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection. However, existing AI-based approaches are primarily binary classifiers, lacking specificity in identifying viral types and reliant on nucleotide sequences. To address these limitations, VirDetect-AI, a novel tool specifically designed for the identification of eukaryotic viruses within metagenomic datasets, is introduced. The VirDetect-AI model employs a combination of convolutional neural networks and residual neural networks to effectively extract hierarchical features and detailed patterns from complex amino acid genomic data. The results demonstrated that the model has outstanding results in all metrics, with a sensitivity of 0.97, a precision of 0.98, and an F1-score of 0.98. VirDetect-AI improves our comprehension of viral ecology and can accurately classify metagenomic sequences into 980 viral protein classes, hence enabling the identification of new viruses. These classes encompass an extensive array of viral genera and families, as well as protein functions and hosts.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.